Programming with SPIP

DOCUMENTATION TO BE USED BY DEVELOPERS AND WEBMASTERS

SPIP’s version 2.1.0+ / August 2010

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

SPIP is both a publication system and a development platform. After
a quick tour of SPIP’s features, we will describe how it works and
explain how to develop with it using helpful examples wherever
possible.

This documentation targets webmasters with knowledge of PHP,
SQL, HTML, CSS and JavaScript.

Contents

Prefaceuveeiec e 7
Notes about this documentation.............ccccccoiiiiiiiniiee 9
INtrOdUCHION ... 11
The templates ... 15
Contents of the direCtoriesccoccvvevee i, 87
EXtending SPIPcooiiiiiiii e 101
Functionalitiesooveeiiiiieee e 197
FOIMS e 229
SQL GCCESS ...coieeiieeee e 253
Creating your own plugins.........cccceiiiieiiiiieiiiee e 303
EXaMPIES ..o 315
GlOSSANY ...ttt ettt 321
INAEX e 325

Preface

The beginnings of this book date back to the late 2008. Matthieu was starting
his work on this documentation for developers, and said to us: “... whatever we
do, let’s do it with an open licence so that other people will be able to take over
after I've done my part and then take it even further ... perhaps one day it could
even be published in hard copy”. A SPIP book with an open licence: a dream
nurtured for years was now showing its first signs of taking solid form. The idea
had become firmly sounded out and recent new technologies were available to
help make it a reality.

Anyone who wants to print a book can now find all kinds of simple tools on
the internet to help with the task. It's great to think that at a modest cost you
can order a one-off copy of any text. And the feeling when you first receive the
printed copy — can you imagine?

The first version of this book is coming out in the magical atmosphere of the
Troglos meeting, and that is a positive sign. Version 1.0 of the book can be
seen as the end of one adventure, but it is also the beginning of another. All the
technical elements required are now in place for other books. They only need
to be written — on a SPIP site, of course! Add a cover, and send it all to the
printer.

SPIP SPIP HOORAY!

Ben.

Notes about this documentation

License and rights

The fruits of long hours of writing, this documentation is a combination of
knowledge from the SPIP community. All of this work is distributed under the
open Creative Commons license - Attribution - Share Alike (cc-by-sa). You may
use these texts for any purpose whatsoever (including commercial), modify
them and redistribute them on the condition that you allow your readers the
same rights to share.

Continuous improvements

This work - still in progress - has been subject to numerous proofreadings
but is certainly not guaranteed exempt from any error. Please don’t hesitate
to offer improvements or point out mistakes by using the suggestion form
available on the documentation internet site (http://programmer.spip.org). You
may also discuss the organisation (of the content or technical presentation)
and the translations by using the discussion list "spip-programmer" (requires
subscription).

Write a chapter

If you feel motivated by this project, you may offer to write a chapter about a
subject that you have mastered, or rework an existing chapter to make it clearer
or more complete. We will do our best to accommodate your efforts and support
you in such activities.

Translations

You may also contribute to the translation of this documentation into English
or Spanish. The site’s private zone (http://programmer.spip.org) is used for
discussing the translations that are currently being prepared. Having said that,
we’re not planning to translate the documentation into other languages until
such time as the organisation of the various chapters has been stabilised,
which might yet take several months.

Computer code and properties of languages

With the aim of retaining compatibility, the computer code segments which
serve as examples only contain ASCII characters. This means, among other
things, that you will not find any language diacritic marks in the comments that
accompany the examples anywhere in the documentation, a matter normally of
considerable importance in French, and almost none in English. Therefore, we
ask that you expect such absences to occur and ignore them.

http://creativecommons.org/licenses/by-sa/2.0/fr/deed.en_GB/
http://programmer.spip.org
http://listes.rezo.net/mailman/listinfo/spip-programmer
http://programmer.spip.org

Happy reading!

Introduction

An introduction to SPIP and a presentation of its general principles

i

12

What is SPIP?

SPIP 2.x is a free software package distributed under the GNU/GPL3 licence.
Originally a Content Management System, it has gradually become a
development platform making it possible to create maintainable and extensible
interfaces independently of the structure of the managed data.

What can SPIP be used for?

SPIP is particularly suitable for websites and portals with regular community
contributions, but it can also be used for a blog, a wiki, or a social network.
More generally, SPIP can manage the storage and presentation of any data
stored in MySQL, Postgres or SQLite databases. Extensions are available
which also offer interaction with XML.

Requirements and basic description
SPIP 2.1 requires PHP version 5.0 or higher and at least 10MB of memory. It
also requires a database (MySQL, Postgres or SQLite are supported).

The public website (front-office) is visible to all visitors by default, but it can be
restricted to certain users, by section, if required. The private interface (back-
office) is accessible only to persons authorised to manage the software or site
content.

The templates (aka squelettes)

The whole website and its private area are calculated from templates that are
made of static code (mainly HTML) and SPIP elements. These templates are,
by default, stored in the squelettes-dist (for the private area) and prive (for the
public-facing pages) directories.

For example, when a visitor makes a request for the home page, SPIP creates
an HTML page based on the template named sommaire.html. Each type
of editorial object in SPIP has a default template to display it, such as
article.html for articles and rubrique.html for sections (or "rubriques"
in French).

http://en.wikipedia.org/wiki/Content_management_systems
http://trac.rezo.net/trac/spip/browser/branches/spip-2.0/squelettes-dist/
http://trac.rezo.net/trac/spip/browser/branches/spip-2.0/prive/

SPIP analyses and compiles these templates into PHP code which it stores in a
cache. These cached files are then used to produce the HTML pages — which
are themselves also cached — and then returned to the site visitor.

Quick overview

SPIP transforms templates into static pages. Templates are mainly composed
of loops (<BOUCLE>) which select elements, typically sets of records, and tags
(#TAG) which display the properties and values of those elements, typically
fields from the records or system-wide functions and preconfigured values.

List the 5 most recently published articles:

<B_art>

<BOUCLE_art(ARTICLES){!par date}{0,5}>
#TITRE</11i>
</BOUCLE_art>

</B_art>

In this first example, the <BOUCLE_art()> loop performs a selection from
the ARTICLES table in the database. It sorts the data in reverse chronological
order and returns the first five elements.

For each article that the loop selects, the #URL_ARTICLE tag is replaced with
the URL calculated for that article’s page, and the #TITRE tag is replaced with
its title as stored in the database.

Typical HTML resulting from this kind of loop:

Recursion</11i>
Parameter</11i>
Argument</1i>
<1li><a href="Mod1ifying-all-of-your-templates-
in">Modifying all of your templates in one hit</1i>
Display an
authoring form, if authorised</1i>

The templates

SPIP generates HTML pages from templates, which each contain a
mixture of HTML, SPIP Toops and criteria, and SPIP tags and
filters. The major strength of SPIP is its ability to easily extract
database content using a simple and understandable language.

15

16

Loops
A Toop typically displays content retrieved from the database. It generates an
optimised SQL query that extracts the desired content.

The syntax of loops
A loop declares both a database table from which to extract information as well
the criteria for selection.

<BOUCLE_Tloopname (TABLE) {criterionl}{criterion2}>
. for each object ...
</BOUCLE_loopname>

Every loop has a name (which must be unique within the template file), this
name is used together with the word “BOUCLE” (English: "loop") to mark the
start and the end of the loop. In this example, the loop’s name is “_loopname”.

The table is specified either by an alias (written in capital letters) or by the
real name of the table (matching the case), for example “spip_articles”. The
example uses the “TABLE” alias.

The next components of a loop are the criteria, each of which are always written
enclosed in braces. For example, the criterion {par nom} will sort the results
according to the “nom” column of the database table.

Example

This loop lists all of the images stored in the database. It draws its
data from the database using the DOCUMENTS alias, and the criterion
{extension IN jpg,png,gif} selects only those files which have a
filename extension matching one in the given list.

<BOUCLE_documents (DOCUMENTS) {extension IN jpg,png,gifl}>
[(#FICHIER|1image_reduire{300})]
</BOUCLE_documents>

The #FICHIER tag contains the URL of the image document. A filter
named “image_reduire” is applied to the tag. This will resize the image to
be at most 300 pixels (in height AND width) and returns an HTML
tag for the new scaled image.

The complete syntax of loops

Loops, like tags, have a syntax which allow them to deliver content in various
combinations. Optional parts are displayed only once (not for each element)
and only if the loop returns some content. An additional alternative part is
displayed only if the loop does NOT return any actual content. Here is the
complete syntax of a loop (x is the loop’s name):

<Bx>

Display this once, before the loop's content
<BOUCLEX(TABLE) {criteria}>

Display something for each matching element
</BOUCLEX>

Display this only once, after the loop's content
</Bx>

Display this if there are no matching element results
<//Bx>

Example

This loop selects the five most recently published articles on the site. In
this example, the <u1> and </u> HTML tags will be displayed only once,
and only if the loop criteria match some elements. If there are no matching
elements, then these optional parts will not be output. This prevents the
resulting HTML file from containing the and pair of tags
without any constituent <1i>. . .</11> child elements.

<B_latest_articles>

<BOUCLE_latest_articles(ARTICLES){!par date}{0,5}>
<1i>#TITRE, [(#DATE|affdate)]</Ti>
</BOUCLE_latest_articles>

17

</B_latest_articles>

The #DATE tag displays the publication date of the article and the
affdate filter ensures that it is in the correct language and is properly
formatted.

Result:

Content of exec file (squelette), 13 October
2009</Ti>
<1i>AJAX Tlinks, 1lst October 2009</1i>
Force language according to visitor, 27
September 2009</11i>
Definition, 27 September 2009</1i>
List of current pipelines, 27 September
2009</1i>

Nested loops

It is often useful to nest loops within each other to display more complicated
elements. Nesting loops in this way makes it possible to use values from the
first, outer, loop as selection criteria for the second, inner, loop.

<BOUCLEX(TABLE) {criteria}>
#ID_TABLE
<BOUCLEy(SECOND_TABLE) {id_table}>

</BOUCLEy>
</BOUCLEX>

Example

Here we list all of the articles contained in the first two sections of the site.
We use the {racine} criteria to select only the top-level sections, which
are usually call "sectors" in SPIP:

<B_rubs>

<BOUCLE_rubs (RUBRIQUES) {racine}{0,2}{par titre}>
<1i>#TITRE
<B_arts>

<BOUCLE_arts(ARTICLES) {id_rubrique}{par titre}>
<Ti>#TITRE</11i>
</BOUCLE_arts>

</B_arts>
</1i>
</BOUCLE_rubs>

</B_rubs>

The ARTICLES loop uses a sorting key {par titre} (“by title”) and
a criterion {id_rubrique}. This last criterion instructs SPIP to select
articles that belong to the current section — in this case, the one that is
currently selected by the RUBRIQUES loop.

This will output:

<ul class="rubriques'>
fr
</1i>
en
<ul class="articles'>
<Ti>Notes about this documentation</1i>
Another article</1i>

</Ti>

20

Recursive loops

A common concept in many programming languages, an algorithm (a data-
processing code) which makes reference calls to itself is described as being
"recursive". Here, a recursive loop (n), contained in a parent loop (x), makes it
possible to execute the loop (x) again, by automatically passing it the required
arguments. Therefore, inside the loop (x), the same loop (x) is called with
different parameters. This is what we refer to as recursion. This process will be
repeated as many times as the recursive loop returns results.

<BOUCLEX(TABLE) {id_parent}>
<BOUCLEN(BOUCLEX) />

</BOUCLEX>

When a site has many sub-sections, or many forum messages, it often uses
recursive loops. This makes it possible to display identical elements very easily.

Example

We can use a recursive loop to display a list of all of the sections in the
site. To do so, we loop for the first time on the sections, with a criterion that
selects the sub-sections of the current section: {id_parent}. We also
sort by numbers (assigned to the sections so that we can display them in
a particular order), and then by titles (in case the numbers are absent or
repeated for sections within a given parent section).

<B_rubs>

<BOUCLE_rubs (RUBRIQUES){id_parent}{par num titre,
titrel}>
<Ti>#TITRE
<BOUCLE_sous_rubs (BOUCLE_rubs) />
</1i>
</BOUCLE_rubs>

</B_rubs>

In the first iteration of the loop, {id_parent} will list the sections at the
root of the site. These "root" sections all have an id_parent field equal to
zero. When the first section is displayed, the recursive loop is called and
so SPIP calls the loop “_rubs” again. This time the {id_parent} criterion
selects a different set of sections because it will list the sub-sections of
the current section. If there are sub-sections, the first one is displayed.
Then the “_rubs” loop is called again, but now for this sub-section. As long
as there are deeper sub-sections to display, this recursive process will
repeat.

Result:

en

Introduction</Ti>
<1i>The templates

<1li>Loops</1i>

</1i>
<1li>Extending SPIP

Introduction</Ti>
<1li>Pipelines</1i>

</1i>

</Ti>
fr

Introduction</Ti>
Template syntax

<1li>Loops</1i>
<1li>Tags</1i>
Loops criteria</Ti>

</Ti>

22

</1i>

More

Understanding the principals of recursive programming is not easy. If this
explanation has left you confused, you may find it helpful to read the
article about recursive loops on SPIP.net: http://www.spip.net/
en_article2090.html

Loops with missing tables

When we ask SPIP to use a table which does not exist, it displays an error on
the page. These error messages help administrators to fix problems with the
site, but other users get to see them as well.

Sometimes, we don’t care if a table is missing and want to ignore it silently, for
example if we reference a table for a plug-in which might not be currently active.
In these cases, we can place a question mark before the end of the brackets to
indicate that the absence of the table is tolerated:

<BOUCLE_tabTle(TABLE ?){criterial}>
</BOUCLE>
Example:

If a template uses the “Agenda” plug-in (which includes an EVENEMENTS
table for events), but which must still function even in the absence of that plug-
in, it is possible to write its loops this way:

<BOUCLE_events (EVENEMENTS ?){id_article}{!par date}>

</BOUCLE_events>

http://www.spip.net/en_article2090.html
http://www.spip.net/en_article2090.html

Tags
Tags are most often used to display content, and sometimes just to calculate it
without displaying (outputting) anything at all. Such content can originate from
various sources:
» The template’s own environment, i.e. some parameters that have been
passed to the template, known as the compilation context.
» Content from an SQL table, by using a loop.
* Another specific source. In this case, the tags and their actions must be
explicitly declared to SPIP, while the first 2 sources can be calculated
automatically.

Tag syntax, the definitive version

Just like loops (boucles), tags often have optional components, and can
sometimes also accept parameter arguments. Asterisks can be applied to
bypass certain processes that are normally executed automatically for that tag.

#TAG

#TAG{argument}

#TAG{argument, argument, argument}
#TAG*

#TAG**

[(#TAG)]

[(#TAG{argument})]

[(#TAG*{argument})]

[before (#TAG) after]

[before (#TAG{argument}|filter) after]
[before (#TAG{argument}|filter{argument}|filter) after]

How the brackets work

The full syntax, with parentheses and square brackets, becomes mandatory
as soon as one of the tag’s arguments also uses parentheses and square
brackets, or when the tag contains a filter.

// risk of bad surprises:

#TAG{ [(#TAG|filter)]}

// always correctly interpreted:

[(#TAGL{[(#TAG| filter)]1})]

// although this works in SPIP 2.0, results are not
guaranteed:

23

24

#TAG{#TAG| filter}

// using a filter means you MUST also use parentheses and
square brackets:

[(#TAG| filter)]

For details as to the meaning of the square brackets and parentheses, please
refer to the article in the official SPIP documentation: SPIP tag syntax.

Example
Display a link to the home page:

#NOM_SITE_SPIP

Display an HTML <div> tag and the contents of the #SOUSTITRE
(subtitle) field if it exists:

[<div class="subtitle">(#SOUSTITRE)</div>]

The #ENV environment

We use the word environment to define the combined collection of variables
that are passed to a particular template. We may also sometimes speak about
a compilation context.

For example, when a visitor requests to see article 92, the article identifier (92)
is passed to the article.html template. Within that particular "squelette"
template, it is possible to retrieve the value of that variable using a special tag:
#ENV. In this way, #ENV{id_article} would display "92".

Some parameters are automatically passed to the template, like the current
date (when the page is actually generated or refreshed), which can then be
displayed using #ENV{date}. Similarly, if we call a template with arguments
using the page’s URL, they will also be passed into the environment.

http://www.spip.net/en_article2055.html

Example

The URL spip.php?page=albums&type=classic will load up the
albums.html template. Within that template, #ENV{type} enables you
to retrieve the value that was passed, which in this case is "classic".

The contents of loops (boucles)

The content extracted from the selection made by a SPIP loop is displayed by
using tags. Systematically, whenever a table has an SQL field "x", SPIP is able
to provide/display the contents of that field by using the syntax #X.

<BOUCLE_myloop (TABLES)>
#X - #NAME_OF_SQL_FIELD - #NONEXISTENT_FIELD

</BOUCLE_myloop>

SPIP will not create an SQL query for ALL of the table’s columns (SELECT

...) in order to retrieve the requested data, but, will, at each occasion,
issue a specific data request — in this case, it would be SELECT X,
name_of_sql_field FROM spip_table.

Whenever a field does not exist in the SQL table, like “nonexistent_field” in our
example above, SPIP will not insert it into the table query, but will attempt to
recover a value for the field from a surrounding loop — if there are any. If there
is no parent loop with such a field, then SPIP looks into the environment, just
as if you had written #ENV{nonexistent_field} instead.

Example

Let's take an example of an SQL table named "cats" which contains 5
columns: "id_cat", "race", "name", "age", "colour". We can list the contents

of that table with:

<B_cats>
<table>
<tr>
<th>Name</th><th>Age</th><th>Race</th>

26

</tr>
<BOUCLE_cats (CATS) {par name}>
<tr>
<td>#NAME</td><td>#AGE</td><td>#RACE</td>
</tr>
</BOUCLE_cats>
</table>
</B_cats>

When automatically analysing the squelette template, SPIP will
understand that it should retrieve the name, age and race fields from the
SQL table called cats. However, it will not retrieve the fields that it does
not need (in this case id_cat and colour), thereby nominally reducing
the load on the database server.

Contents of parent loops

Sometimes it's useful to retrieve contents from a loop which is a parent of the
current loop, just by using an ordinary SPIP tag. SPIP offers a special syntax
to do this explicitly with the # symbol, by simply identifying which loop you wish
to retrieve the data from (where n below is the identifier of the targeted loop):

#_n:TAG

Example

Display the title of the section (rubrique) beside the title of the current
article:

<BOUCLE_rubs (RUBRIQUES)>

<BOUCLE_arts(ARTICLES) {id_rubrique}>
<1li>#_rubs:TITRE - #TITRE</Ti>
</BOUCLE_arts>

</BOUCLE_rubs>

Predefined tags

We have already seen that we can use tags to extract data from the
environment or from an SQL table. There are also some other tags which have
their own explicitly defined functions.

In such cases, these functions are declared (within SPIP) either in the ecrire/
public/balises.php file, or in the ecrire/balise/ directory

Here are a few examples:

* #NOM_SITE_SPIP : returns the name of the site

e #URL_SITE_SPIP : returns the site URL (without the final /)

* #CHEMIN : returns the path of a file #CHEMIN{javascript/
jquery.js}

* #CONFIG : enables site configuration data to be retrieved (often stored in
the "spip_meta" SQL table) e.g. #CONFIG{version_installee}

* #SPIP_VERSION : displays the current version of SPIP

We will see many more such examples in the following articles.

Generic tags
SPIP offers some powerful tools for creating special tags that reflect the context
of the page, the current loop, or simply the tag’s name.

It is possible to declare a set of tags with the same prefix, which will then all
inherit a common processing.

These types of tags are declared in the ecrire/balise/ directory. They are stored
as SOMETHING_. php files.

For example:
* #LOGO_ to display the logos of an article, a section, etc.:
#LOGO_ARTICLE, #LOGO_RUBRIQUE, etc.
* #URL_ to determine the URL for a SPIP object, such as #URL_MOT within
a MOTS loop
* #FORMULAIRE_ to display a form defined in the /formuTlaires
directory, like the one for #FORMULAIRE_INSCRIPTION

27

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/balises.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/balises.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/balise/
http://trac.rezo.net/trac/spip/browser/spip/ecrire/balise/

28

Automatic tag processes

Most SPIP tags, especially those that involve reading data from the database,
perform some automatic processes to block malicious code that might have
been added by article editors when they write their articles (PHP code or
JavaScript scripts).

As well as these standard processes, there are others that can be defined for
any SQL field in order to systematically apply those processes to the field in
question. These operations are defined in the ecrire/public/interfaces.php file
using a global table called $tabTe_des_traitements. The key to this table
is the tag name, the value being an associated table:
« its "0" key (the first $table_des_traitements['BALISE"'][]
encountered) defines a process regardless of the table in question,
* a'"table_name" key
($table_des_traitements['BALISE']['table_name'] without
the table prefix) defines a process for a tag in that particular table.

The processes are provided by entering a character string fonction (%s) that
explicitly reference the functions to be applied. Within that function call, "%s"
will be replaced by the contents of the field.

$table_des_traitements['BALISE'][]= '"traitement(%s)';
$table_des_traitements['BALISE']['objets']= 'traitement(%s)';

Two common usages of automatic filters, which have additionally been defined
with constants, can be reused:
* _TRAITEMENT_TYPO applies the SPIP typographical processes (applying

bold, for example),
¢ _TRAITEMENT_RACCOURCIS applies the typographical processes and

translations of SPIP links (adding the html attribute class="spip_out", for
example).

Example

The #TITRE and #TEXTE tags are processed automatically regardless
of which or how many loops they are used in, and these processes are
defined as follow:

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/interfaces.php

$table_des_traitements['TEXTE'][]=
_TRAITEMENT_RACCOURCIS;

$table_des_traitements['TITRE'][]= _TRAITEMENT_TYPO;

The #FICHIER tag performs a special process only within a documents
loop:

$table_des_traitements['FICHIER']['documents']=
'get_spip_doc(%s)';

Interrupting the automatic tag processes
The security processes and defined processes apply automatically to the tags,
but it is possible to turn them off for special cases within a given template file.

In essence, this delivers the tag content in a more "raw" format. Adding the
"asterisk" suffix to a tag has this effect:

// execute all processes

#BALISE

// avoid the specifically defined processes
#BALISE*

// avoid even the security processes
#BALISE**

Example

To delay the application of typographical adjustments and the conversion
of SPIP links for the text on a page (the propre filter is normally applied
automatically) so that you can interpose your own custom filter before
applying the "normal” filter again afterwards, you could do this:

[<div

class="texte">(#TEXTE*|special_filter|propre)</div>]

29

30

Useful tags to know

Among the many tags that SPIP contains by default, some are used frequently
enough to deserve special mention here.

Name
#AUTORISER (p.31)
#CACHE (p.31)
#CHEMIN (p.32)

#DESCRIPTIF_SITE_SPIP

(p-32)
#EDIT (p.33)

#ENV (p.33)
#EVAL (p.34)
#EXPOSE (p.35)

#GET (p.36)

#INCLURE (p.37)
#INSERT_HEAD (p.38)

#INSERT_HEAD_CSS
(p.38)

#INTRODUCTION (p.38)
#LANG (p.39)
#LANG_DIR (p.40)
#LESAUTEURS (p.41)
#MODELE (p.41)
#NOTES (p.42)

#REM (p.44)
#SELF (p.44)
#SESSION (p.44)
#SESSION_SET (p.45)

Description

Checks authorisations

Defines the duration of the cache
Retrieves the path to a file

Returns the site’s description

Edits content (using the "crayons" plugin)
Retrieves an environment variable’s value
Evaluates an expression using PHP

Emphasises the element currently being read
(in a list or menu)

Retrieves a value stored with a #SET
Includes a template

Tag for inserting scripts into the HTML <head>
section for SPIP or its plugins

CSS insertion tag within the HTML <head>
section for plugins

Displays an introduction

Finds out the language code
Returns the writing direction
Displays the authors of an article
Inserts a layout model

Displays the footnotes created using the [[]1]
SPIP link

Inserts a comment in the code
Returns the URL of the current page
Recovers data about the session

Defines session variables

Name Description

#SET (p.45) Stores a value, retrievable with #GET
#VAL (p.46) Returns a value
#AUTORISER

#AUTORISER is used to check access authorisations to particular content
in order to tailor specific display for certain visitors. A specific chapter
(Authorisations (p.198)) has been dedicated just to this topic.

[(#AUTORISER{action,objet,identifier}) I am authorised]

The existence of this tag, as with the #SESSION tag, generates a different
cache entry for every identified site visitor, and another cache entry for
unauthenticated visitors combined.

Example

Check if a visitor has the right
» to view a particular article
» to modify a particular article

[(#AUTORISER{vOir,article,#ID_ARTICLE}) I am authorised
to view the article]

[(#AUTORISER{modifier,article,#ID_ARTICLE}) I am
authorised to modify the article]

#CACHE

#CACHE{duration} is used to define the duration that the cache will be valid
for after calculation of a template, expressed as a number of seconds. When
this duration is exceeded, the template will be freshly calculated the next time
it is requested.

S

This tag is generally inserted at the top of template files. In its absence, by
default, the validity duration of a page is for 24 hours (defined by the constant
_DUREE_CACHE_DEFAUT).

Example
Define a cache validity of one week:

#CACHE{3600%24*7}

#CHEMIN

#CHEMIN{directory/file.ext} returns the relative address of a file within
the SPIP hierarchy. This topic is discussed in full in the article titled: The
concept of path (p.104).

Example

Return the address of the "habillage.css" file. If it exists in the
squelettes/ folder, that address will be provided, otherwise it will be the
address of the file present in the squelettes-dist/ directory.

#CHEMIN{habillage.css}

The squelettes-dist/inc-head.html file uses it to load the corresponding
stylesheet into the <head> section of the HTML code. If the file is found,
the HTML <11 nk> tag is displayed.

[<Tink rel="stylesheet"
href="(#CHEMIN{habillage.css}|direction_css)" type="text/
css" media="projection, screen, tv" />]

Note that the direction_css filter is used to invert the whole CSS
stylesheet (1eft to right and vice versa) if the contents of the site are
written in a human language that is written from right to left.

32

http://trac.rezo.net/trac/spip/browser/spip/squelettes-dist/inc-head.html

#DESCRIPTIF_SITE_SPIP
#DESCRIPTIF_SITE_SPIP returns the description of the site as defined on
the configuration page in the private area (back office).

Example

In the <head> section of the HTML code, this makes it possible to define
the value for the HTML "description" meta tag using this SPIP tag, which
is particularly useful on the site’s home page (the sommaire.html file).

[<meta name="description"
content="(#DESCRIPTIF_SITE_SPIP|couper{150}|textebrut)"

/>]

In this example, the couper{150} filter trims the contents to the first 150
characters (whilst still avoiding cutting any given word in half); and then
the textebrut filter removes any HTML mark-up.

#EDIT

#EDIT{name_of_the_field}: this tag, by itself, does nothing and returns
nothing... But when coupled with the "crayons" plugin, it makes it possible to
edit content on the public site if the current visitor is authorised to do so. In this
case, it returns the names of the CSS classes which will be used by a jQuery
script supplied by that plugin.

<div class="#EDIT{champ}">#CHAMP</div>

Example
To be able to edit the "title" field:

<h2[class="(#EDIT{titre})"]>#TITRE</h2>
<h2 class="#EDIT{titre} another_css_class">#TITRE</h2>

33

34

#ENV

#ENV{parameter} — which we addressed in (The #ENV environment (p.24))
— retrieves environment variables passed into the template. A second argument
is used to return a default value if the parameter requested does not exist in the
environment or if its contents are empty.

#ENV{parameter, default value}

The parameter value retrieved is automatically filtered through
entites_html, which converts the text into an HTML entity (a < character
thereby becoming &1t ;). To avoid this conversion, we can apply an asterisk to
the tag:

#ENV*{parameter, default value}

Finally, the #ENV tag just by itself returns a sequential table of all of the
environment parameters.

Example
Retrieve an article identifier, otherwise the string "new":

|#ENV{id_art1c1e,new}

Display all of the environment variables (useful for debugging):

[<pre>(#ENV** |unserialize|print_r{1})</pre>]

#EVAL

#EVAL{expression}, although quite seldom used, makes it possible to
display the results of the PHP evaluation of the expression passed.

Example

#EVAL{3%8%12}

#EVAL{_DIR_PLUGINS}
#EVAL{$GLOBALS['meta']}

#EXPOSE

#EXPOSE is used to Emphasise one particular entry within a list. When we
loop on a table and the #ENvV{id_table} tag has a value within the current
environment, or there is an #ID_TABLE in a higher level loop, then #EXPOSE
will return a special code when the loop hits the same value as the identifier.

Its syntax is:

#EXPOSE{text if yes}
#EXPOSE{text if yes, text if no}
// expose with no parameters returns 'on' if yes or the empty

string '' if no
#EXPOSE
Example

List the articles in the current section, and assign the CSS class "on" for
the current article.

<BOUCLE_arts (ARTICLES){id_rubrique}{par num titre,
titre}>

<1i[class="(#EXPOSE{on})"]>#TITRE</1i>
</BOUCLE_arts>

Results:

<1i>#AUTORISER</T1i>

<1i>#ENV</Ti>
<Ti>#EVAL</Ti>
<1i class="on">#EXPOSE</Ti>

35

36

#GET
#GET{variable} is used to retrieve the value of a local variable that was
stored using a #SET{variable, value}. See also #SET (p.0).

A second argument is used to return a default value if the parameter requested
does not exist or if its content is empty.

#GET{variable, default value}

Example
If "use_documentation" equals "yes", make it known:

#SET{use_documentation,yes}
[(#GET{use_documentation} |=={yes}|oui)
we use documentation!

]

Display a link to the site’s home page over an image called "my_logo.png
if there is one, otherwise use "logo.png", otherwise use the site logo:

[(#SET{image, [(#CHEMIN{my_logo.png}
| sinon{#CHEMIN{Togo.png}}
| sinon{#LOGO_SITE_SPIP})I})]

[(#GET{image}
|image_reduire{100})]

Differentiate the absence of an element in the environment: define
#ENV{default} as a default value when #ENV{activer} does not
exist. To do this, the is_nul1 filter allows us to test that #ENV{activer}
is not defined. If #ENV{activer} exists but is empty, it will be used. We
can thereby differentiate the case of sending an empty value into a form,
as shown below when the value sent is that of the "champ_activer_non"
input field

[(#seT{valeur, [(#ENV{activer}
[is_null1|?{#ENV{defaut},#ENv{activer}})]1})]
<input type="radio" name="activer"
id="champ_activer_oui"[
(#GET{valeur}|oui)checked="'checked'] value='on' />
<label for="champ_activer_oui"><:item_yes:></label>
<input type="radio" name="activer"
id="champ_activer_non"[
(#GET{valeur}|non)checked="checked'] value="" />
<label for="champ_activer_non"><:item_no:></Tabel>

#INCLURE

#INCLURE is used to add the results of an inclusion into the current template.
We call this a "static" inclusion since the results of the compilation are added
to the current template, into the same cache file. This tag is therefore different
from a "dynamic" inclusion using <INCLURE. . ./> which creates a separate
cache file (with its own specific cache duration).

// preferred format

[(#INCLURE{fond=template_name, argument, argument=xx})]
// other format, best to avoid

[(#INCLURE{fond=template_name}{argument}{argument=xx})]

From the perspective of the visible results, using <INCLURE> or #INCLURE
will result in identical contents, but causes quite different operations from
the internal management point of view. Dynamic inclusion using <INCLURE>
will generate more autonomous cache files. Static inclusion using #INCLURE
creates less files, but all of them are larger since their content is duplicated in
each page of the cache.

37

36

Example

For the current template, add the content resulting from the compilation of
the "inc-navigation.html" template, to which we will pass "id_rubrique" as
a context argument:

[(#INCLURE{fond=inc-navigation, id_rubrique})]

Note: the inclusions inc-head and inc-navigation in SPIP’s default
templates are called using dynamic inclusions, and not static ones as are
shown in this example.

#INSERT_HEAD

#INSERT_HEAD entered between the HTML <head> and </head> markup
tags is used to automatically add in certain JavaScript scripts. Some scripts
are already added in by default by SPIP (jQuery, for example), and others are
inserted by various plugins. Refer to the sections about the insert_head (p.0)
and jquery_plugins (p.0) pipelines which expand on adding in such scripts. To
add in additional CSS code, it is better to use the #INSERT_HEAD_CSS tag and
the insert_head_css (p.166) pipeline.

In SPIP’s default templates, this tag is inserted at the end of the template
named squelettes-dist/inc-head.html.

#INSERT_HEAD_CSS

#INSERT_HEAD_CSS inserted between the <head> and </head> HTML Tags
enables plugins to add CSS scripts by using the insert_head_css (p.166)
pipeline. If this tag does not exist in the template file, then #INSERT_HEAD will
add the contents of the pipeline itself.

In SPIP’s default template files, this tag is inserted just before the
habillage.css CSS file in squelettes-dist/inc-head.html. This means that
graphical themes that overwrite this habilTlage.css file can likewise be
overwritten themselves, using CSS directives or include references, by
declarations added by the corresponding installed plugins.

http://trac.rezo.net/trac/spip/browser/spip/squelettes-dist/inc-head.html
http://trac.rezo.net/trac/spip/browser/spip/squelettes-dist/inc-head.html

#INTRODUCTION

The #INTRODUCTION tag displays an extract of the contents of an SQL "text"
field (if the table has such a field). For articles, this extract is drawn from the
"Brief description" field if it has a value, else from the "Standfirst introduction”
field appended by the "Text" field. The extract can also be explicitly defined
when writing the content, by framing it with <intro> and </intro> mark-up
tags.

An argument can be passed to define the maximum length of the introduction
(the default is 600 characters):

#INTRODUCTION{length}

Example

Provide the HTML meta tag "description" with an introductory text about
the article pages (example in squelettes-dist/article.html) :

<BOUCLE_principale(ARTICLES) {id_article}>

[<meta name="description"
content="(#INTRODUCTION{150} |attribut_htm1)" />]

</BOUCLE_principale>

Display the 10 most recent articles with an introduction of their contents:

<B_articles_recents>
<h2><:derniers_articles:></h2>

<BOUCLE_articles_recents (ARTICLES) {!par date}
{0,10}>
<1i>
<h3>#TITRE</h3>
[<div class="#EDIT{intro}
introduction'">(#INTRODUCTION)</div>]
</1i>
</BOUCLE_articles_recents>

</B_articles_recents>

http://trac.rezo.net/trac/spip/browser/spip/squelettes-dist/article.html

40

#LANG

#LANG displays the language code taken from the element that is closest to
the tag. If the tag is located within a loop, #LANG will return the SQL "lang"
field from the loop if it exists, otherwise it will return that of the (#ENvV{1ang})
environment, and failing that the language code for the site’s main language
(#CONFIG{langue_site}).

#LANG™ is used to return only the language of the loop or the environment. If
none is defined, then the tag doesn’t return anything (that is, it doesn’t even
return the site’s main language).

Example
Define the language in the HTML tag for the page:

<html xmIns="http://www.w3.0rg/1999/xhtml"
xml:Tang="#LANG" Tang="#LANG" dir="#LANG_DIR">

Define the language in an RSS feed (an example from squelettes-dist/
backend.html) :

<rss version="2.0"
xmIns:dc="http://purl.org/dc/elements/1.1/"
xmlns:content="http://purl.org/rss/1.0/modules/

content/"

>

<channeT[xmT:Tang="(#LANG)"]>
<title>[(#NOM_SITE_SPIP|texte_backend)]</title>

<language>#LANG</language>

<generator>SPIP - www.spip.net</generator>
</channel>
</rss>

http://en.wikipedia.org/wiki/squelettes-dist%2Fbackend.html
http://en.wikipedia.org/wiki/squelettes-dist%2Fbackend.html

#LANG_DIR

#LANG_DIR returns the writing direction for a text depending on its language,
being either "Itr" (for "left to right"), or "rtl" (for "right to left"). As with the
#LANG tag, the language is taken from the closest loop containing a "lang"
field, otherwise from the environment, otherwise from the site’s main language.
This tag is very useful for multi-lingual sites that mix languages having different
writing directions (like English and Arabic, for instance).

Example
Display the text for a section in the direction that it should be in:

<BOUCLE_display_content (RUBRIQUES) {id_rubrique}>
<div dir="#LANG_DIR'>#TEXTE</div>
</BOUCLE_display_content>

#LESAUTEURS

#LESAUTEURS displays the list of authors of an article (or syndicated article),
separated by commas. When the SQL field "lesauteurs" does not exist for the
table requested, as is the case with articles table, then this tag loads a pre-
formatted model squelettes-dist/modeles/lesauteurs.html.

Example

Display the authors from inside an ARTICLES loop:

<small>[<:par_auteur:> (#LESAUTEURS)]</small>

#MODELE

#MODELE{name} inserts the results of a template contained in the modeles/
directory. The identifier of the parent loop is passed by default with the "id"
parameter to this code inclusion.

Additional arguments can be passed:

H

http://trac.rezo.net/trac/spip/browser/spip/squelettes-dist/modeles/lesauteurs.html

42

// preferred format

[(#MODELE{name, argument=xx, argument})]
// alternative format, to be avoided

[(#MODELE{name}{argument=xx}{argument})]

These inclusions may also be called within the body text of an article (with
the correct syntax), which means that article authors can optionally include
particular models as and when they choose:

// XX is the identifier of the object to pass.
<namexx>

// arguments using | (pipes)
<nameXxX|argument=xx|argument2=yy>

Example
List the various translations of an article, with a link to each of them:

<BOUCLE_art(ARTICLES){id_article}>
#MODELE{article_traductions}
</BOUCLE_art>

#NOTES

#NOTES displays the footnotes (collected at the bottom of the page) which
have been calculated during the display of the preceding tags. Whenever a
tag, for which we calculate SPIP links using the propre filter or using another
automatic process, contains some footnotes, these notes will be displayed by
the #NOTES tag once they have all been calculated.

[(#BALISE|propre)]
#TEXTE
#NOTES

Details about footnotes

It is the traiter_raccourcis() function called by the propre filter which
executes the (inc_notes_dist() function in the ecrire/inc/notes.php file,
which temporarily stores the notes in memory. When the #NOTES tag is actually
called, these notes are returned and then emptied from memory.

Say there is some text in the "Standfirst introduction" and more in the "Text"
body of a given article as shown below:

// Introductory text:

In the intro, there is one [[Note A]] and another note [[Note
B11]

// Main text:

In the text, there is one [[Note C]] and another note [[Note
D]]

When the template is displayed, the two code examples below will generate
different contents. The first will display all of the notes together, numbered from
1 to 4, after the contents of the text:

<BOUCLE_art(ARTICLES){id_article}>
#CHAPO

#TEXTE

#NOTES

</BOUCLE_art>

In the second example below, the notes of the "intro" are displayed first
(numbered from 1 to 2), immediately after the contents of the #CHAPO tag, and
then the notes from the text (also numbered from 1 to 2), are displayed after
the contents of the #TEXTE tag:

<BOUCLE_art(ARTICLES){id_article}>
#CHAPO

#NOTES

#TEXTE

#NOTES

</BOUCLE_art>

43

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/notes.php

44

Example

Calling the notes is often done after all the other fields for an article,
which will take into consideration all the notes that have been calculated.
Displaying them is quite simple:

[<div
class="notes"><h2><:info_notes:></h2>(#NOTES)</div>]

#REM

#REM is used for commenting code within the templates.

I[(#REM) This is NOT a pipe! It's just a comment]

Note: The code contained in the tag is nonetheless interpreted by SPIP, but
nothing is displayed. A filter found on the tag will effectively be called (which is
not necessarily what you would like to happen):

[(#REM|fiTter)]
[(#REM) [(#TAG|filter)]]

#SELF

#SELF returns the URL of the current page.

If you wish to use this tag inside some included code, then the URL can only
be correctly calculated inside that inclusion if the self or env parameter is
passed so that a different cache is created for each of the URLs.

<INCLURE{fond=xx}{env} />

#SESSION

#SESSION{parameter} displays data about a connected visitor. A session
may be considered as a set of some data, stored on the server whilst the visitor
is still connected. As such, this data can be retrieved and re-used when the
visitor changes pages by navigating through the site.

The existence of this tag, as with the #AUTORISER tag, generates a different
cache for each authenticated visitor on the site, and one more additional cache
for the non-authenticated visitors.

Example
Display the name of the visitor if it is known:

I#SESSION{nom}

Display a notice if the visitor is authenticated, that is, if the visitor has an
id_auteur value:

I[(#SESSION{id_auteur}|oui) You have been authenticated]

#SESSION_SET

The #SESSION_SET{parameter, value} tag is used to define session
variables for a visitor, which can then be retrieved using
#SESSION{parameter}.

Example
Define a flavour as vanilla, and then retrieve it.

#SESSION_SET{flavour,vanilla}
#SESSION{flavour}

45

46

#SET

#SET{variable,value} is used to store values locally within a template.
They are retrievable, within the same template, using #GET{variable}. See
also #GET (p.36).

Example

Store the value of a colour that already exists in the environment,
otherwise use a default colour:

#SET{1ight,##ENV{1ight_colour,edf3fe}}
#SET{dark,##ENv{dark_colour,3874b0}}
<style class="text/css">
#contenu h3 {

color: [(#GET{1ight})];
}
</style>

#VAL

#VAL{value} is used to return the value passed as an argument. This tag is
mainly used to send a first argument to some existing filters.

#VAL{This text will be returned}

Example

Return a character using the PHP function chr:

[G#vaL{91} [chr)] // [
[G#vAL{93}[chr)] //]

Sometimes the SPIP compiler gets confused between the square brackets
that we want to show as text characters, and the opening and closing
square brackets used for our SPIP tags. A common example is sending a
table parameter to a form (name="field[]"), when the field is included

inside a loop:

The templates

// problem: the] in the text field[] confuses the SPIP
compiler

// with the closing of the #ENV tag

[(#eENv{afficher}|oui)

<input type="hidden" name="field[]" value="valeur" />

]

// no problem for the SPIP compiler with the code shown
below

[(#eENnv{afficher}|oui)

<input type="hidden"

name="field[(#VAL{91}|chr)] [(#vAL{93}|chr)]"
value="valeur" />

]

47

48

Loops Criteria

Use criteria in loops to specify simple or complex selection conditions.

Criteria syntax
The loops criteria for are written between curly brackets just after the tables
names.

<BOUCLE_name (TABLE) {criterionl}{criterion2}...{criterion n}>

Any SQL field in a table can become a selection criterion separated by an
operator. But other criteria can be created when necessary. They are defined
in the ecrire/public/criteres.php file.

Some tags can also be used as criteria parameters, but it is not possible to
use their optional components. In general, the use of square brackets is not
possible:

<BOUCLE_name (TABLE) {id_tabTe=#TAG}> 0K
<BOUCLE_name (TABLE) {id_table=(#TAG|filter)}> OK
<BOUCLE_name (TABLE) {id_table=[(#TAG)]}> will fail

Example

This ARTICLES loop has 2 criteria. The first selects the articles where
the "id_rubrique" SQL field in the "spip_articles" SQL table equals 8. The
second criterion specifies that the results should be sorted in ascending
order of those articles’ titles.

<BOUCLE_arts(ARTICLES) {id_rubrique=8}{par titre}>
- #TITRE

</BOUCLE_arts>

http://trac.rezo.net/trac/spip/browser/branches/spip-2.0/ecrire/public/criteres.php

Criteria shortcuts

A criterion can sometimes be written in a simplified form: {criterion}.
In such cases, SPIP normally translates this as {criteria=#CRITERIA}
(unless a special function has been defined for this particular criterion in ecrire/
public/criteres.php).

<BOUCLEX(TABLES) {criterion}>...

Example

<BOUCLE_art(ARTICLES){id_article}>...

In this example, {id_article} makes the selection
{id_article=#ID_ARTICLE}. Just as with any SPIP tag,
#ID_ARTICLE is retrieved, if present, from the closest containing loops,
otherwise it is retrieved from the environment, as if you had written
#ENV{id_article}.

Simple operators
All of the criteria that perform selections based on SQL field values have a
certain number of operators available for their use.

{field operator value}

Here is a list of the simple operators:

» =:equality operator {id_rubrique=8} selects records with
"id_rubrique" equal to 8.

« > : strictly greater than operator. {id_rubrique>8} selects records with
"id_rubrique" greater than 8.

« >=: greater or equal operator. {id_rubrique>=8} selects records with
"id_rubrique" greater than or equal to 8.

» < strictly lesser than operator . {id_rubrique<8} selects records with
"id_rubrique" less than 8.

» <=:lesser or equal operator. {id_rubrique<=8} selects records with
"id_rubrique" less than or equal to 8.

49

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/criteres.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/criteres.php

50

« I=:notequal operator {id_rubrique!=8} selects records with
"id_rubrique" different from 8.

The IN operator

There are some other operators that allow for more specific selections. The
IN operator selects records based on a list of possible matching values for a
field element. This list can either be determined by a comma-separated list of
characters, by an array table returned by a tag, or by a tag or tag filter.

<BOUCLEX(TABLES){field 1IN a,b,c}>
<BOUCLEX(TABLES){field IN #ARRAY{0,a,1l,b,2,c}}>
<BOUCLEX(TABLES) {field IN (#VAL{a:b:c}|explode{:})}>

The inverse operator ! IN selects records that have field values that do not
match any of those listed after the operator.

<BOUCLEX (TABLES) {field !'IN a,b,c}>

Example
Select the images linked to an article:

<BOUCLE_documents (DOCUMENTS) {id_article}{extension IN
png,jpg,gifl>

- #FICHIER

</BOUCLE_documents>

Select the sections, except for 3 specific ones:

<BOUCLE_sections (RUBRIQUES) {id_rubrique !'IN 3,4,5}>
- #TITRE

</BOUCLE_sections>

The == operator

The == operator (or its inverse !==) is used for making record selections based
on regular expressions. They can therefore enable extremely specific selection
criteria, but may also be quite resource-intensive for the database manager.

<BOUCLEX(TABLES){field == expression}>
<BOUCLEX(TABLES) {field !== expression}>

Example
Select articles with a title that starts with "The" or "the":

<BOUCLE_arts (ARTICLES) {titre == A[Tt]he}>
- #TITRE

</BOUCLE_arts>

Select article texts that do not contain the word "carnival":

<BOUCLE_arts(ARTICLES){texte !== 'carnival'}>
- #TITRE

</BOUCLE_arts>

Select article texts that do contain the word "carnival", but only if followed
by the word "Venice" within 20 characters.

<BOUCLE_arts(ARTICLES) {texte == 'carnival.{0,20}venice'}>
- #TITRE

</BOUCLE_arts>

The "!" operator

Conditional criteria of simple negation, when operating on fields that are
external to the table (fields accessed by a join to another table), do not always
do what one might think at first.

As an example, the criteria {titre_mot!=rose} selects, for an ARTICLES
loop, all the articles which are not linked to the keyword "rose". However, the
type of SQL join created selects only articles linked to at least one keyword,
and where at least one of those keywords is not "rose".

51

52

But in most cases, we would simply be trying to display all articles that do not
have the keyword "rose", regardless of whether they had any other keywords
or not. That is the result produced by using code with a {!criterion}. The
code below generates a double SQL query:

<BOUCLE_articles(ARTICLES) {!titre_mot = 'X'}> ...

First, articles with keyword X are selected, then they are removed from the
main SQL record selection by use of a NOT IN (selection criteria) on
the actual SQL database query.

This syntax is equally valid when you want to force a join field, which could be
written as follows:

<BOUCLE_articles(ARTICLES) {!mots.titre = 'X"}> ...

Example

Select the sections which have no article whose title starts with an "L" or
an "I". Note, however, that this query uses a regular expression (A[L1])
which will require more calculation time from the database manager.

<BOUCLE_rub(RUBRIQUES){!articles.titre == "A[L1]"'}> ...

Optional criteria

Sometimes it's useful to make a selection only if the environment contains
the requested tag. For example, we might hope to filter the loops based on a
particular search, but only if a search has been performed, otherwise display
everything. In such a case, a trailing question mark is used to request such an
action:

<BOUCLEX(TABLES){criterion?}>...

Example

Display either all the articles of the site (if there is no id_article,
id_rubrique or recherche variable apparent), or perform a selection
based on the criteria that are present. In this way, if we call the template
with the id_rubrique=8 and recherche=extra parameters, the loop
will select only the articles that match these criteria. This allows us to
reuse the loop code in different ways within a model or with SPIP template
includes.

<BOUCLE_art(ARTICLES){id_article?}{id_rubrique?}{recherche?}>
- #TITRE

</BOUCLE_art>

Optional criteria with operators

The use of optional criteria may be combined with the use of operators under
certain specific conditions. In particular, it is necessary for the variable which
is being tested in the environment to have the same name as the criteria; for
example, X in:

{X 7?operator #ENV{X}}. Any operator can be used here, and you only
need to affix a ? to the selected operator (leaving no space between the ? and
the operator).

In the following examples, the test is performed only if the variable is present in
the environment. Otherwise the criterion is ignored.

<BOUCLEX(TABLES) {myvar ?operator #ENV{myvar}}>
<BOUCLEX(TABLES) {myvar ?== A#ENV{myvar}$}>
<BOUCLEX(TABLES) {myvar ?!IN #ENV{myvar}}>
<BOUCLEX(TABLES) {myvar ?LIKE %#ENV{myvar}%}>...

Example

To select the 10 most recent articles but with an "earlier publishing date"
prior to the one in the current environment, or, failing that, simply the 10
most recent articles, use this loop:

53

>4

<BOUCLE_art(ARTICLES) {date_redac ?<
#ENvV{date_redac}}{!par date}{0, 10}>
<Ti>#TITRE</T11i>

</BOUCLE_art>

Tag filters

Applying filters allows you to change the output generated by SPIP tags.

Filter syntax

Filters are applied to tags by using the pipe (“|”) character. Their effect is to call
a PHP function, either one which is in the standard PHP library or one which
has been declared within SPIP.

[(#TAG|filter)]
[(#TAG|filter{argument2, argument3, ...})]

Whenever a filter “x” is requested, SPIP looks for a function called “filtre_x”.
If it does not find one, it looks for “filtre_x_dist”, and then “x”. It then runs the
function that it has found, passing any arguments. It is important to understand
that the first argument sent to the filter (and therefore to the PHP function) is
the result of the component to the immediate left of that filter. Thus the example
above shows the filter's parameter list as argument2, argument3, etc.

Example

Insert a title attribute on a link. To do this, we use the |couper
filter, which allows us to cut a text down to a requested length, and
the |attribut_html filter, which allows us to apply escape sequence
characters to apostrophes that might cause problems with the generated
HTML code (example: title="'David's book' would cause a problem
because of the embedded apostrophe.).

The |couper filter is applied to the result of the #TITRE tag, and the
|attribut_html filter is applied to the result of the | couper filter. This
shows how filters can be chained.

<a href="#URL_ARTICLE"
title="[(#TITRE|couper{80}|attribut_html)]">Next
article

55

56

Filters derived from PHP classes
A less well-known coding technique makes it possible to also execute a PHP
class method. When requested to process a filter written as “x::y”, SPIP will

look for a “filter_x" PHP class with an executable “y” method. If it doesn’t find
one, it will then look for a class “filtre_x_dist”, and then finally for a class “x”.

[(#TAG|class: :method)]

Example

Let’s imagine a PHP class which has been defined as shown below. It contains
a (recursive) function which calculates factorials (x! =
x*(x=1)*(x=2)*...%3%2*1).

class Math{
function factorial($n){
if ($n==0)
return 1;
else
return $n * Math::factorial($n-1);

This new function could be called within SPIP as follows:

[(#vAL{9} |Math::factorial)]
// returns 362880

Comparison filters
Just like the criteria used for loops, comparison filters can also be applied to
tags with the following "pipe" syntax:

[(#TAG|operator{value})]

The list of applicable operators includes:
* == (confirms equality)
o 1=

* >

Example

[(#TITRE|=={Chocolate} |oui)
Some chocolate!
]
[(#TEXTE|strlen|>{200} |oui)
This text is longer than 200 characters!

]

[(#TITRE|=={Chocolate}) Some chocolate!] would, if the test
evaluates to true, display “1 Some chocolate!” (since 1 indicates a true
value in PHP). But adding the |oui filter (French for yes) allows you to
hide the results of the test.

Search and replace filters
There are some filters that allow you to perform comparisons or searches for
components. This is the case for the "|match" and "[replace” filters.
« match is used to test if the argument passed verifies a regular expression
passed as the filter's second argument.
» replace is used to replace text, and is also followed by a regular

expression.

[(#TAG|match{text})]
[(#TAG|replace{text,other text})]

Example

// displays "text yes"

[(#vAL{A good text}|match{text}) vyes]

// displays "yes"

[(#vAL{A good text}|match{text}|oui) yes]

57

58

// doesn't display anything

[(#vAL{A good house}|match{text}) non]

// displays "yes"

[(#vAL{A good house}|match{text}|non) yes]

// displays "A fine cat"
[(#vAL{A fine house}|replace{house,cat})]

Test filters

There are several filters used for tests and logical operations. These are the
filters "?", "sinon" (else in French), "oui", "non", "et", "ou", "xou" which are
generally used in most cases.

e |?{vrai,faux} returns "faux" (false in French) if what is input to the
filter is empty or null, otherwise it returns "vrai" (true in French) - this
might be better interpreted in English as
"boolean_does_this_thing_have_a_value".

* |sinon{this text} returns "this text" only if what is input to the filter
is empty, otherwise it simply returns that same input - this might be better
interpreted in English as "but_if_empty_put_this_instead".

* |oui returns either a space or nothing. It is equivalentto |?{"' ',''}
or |?{" '} andis used to return a non-empty content (a space) to
indicate that the optional parts of the tags should be displayed.

* |non is the opposite of |oui and is equivalentto |?{'"',"' '}

» | et is used to confirm the existence of 2 elements (logical AND)

* |ouis used to confirm the existence of either 1 or 2 elements (logical
OR)

* | xou is used to confirm the existence of one, and only one, of the two
elements (logical XOR).

In addition, SPIP will also understand the English equivalents for these: "yes",

"not", "or", "and" and "xor".

The templates

Example

// display the short description if it exists, otherwise
the beginning of the text

[(#CHAPO| sinon{#TEXTE | couper{200}3})]

// displays "This title is Tong" only if the title is
Tonger than 30 characters

[(#TITRE|strlen|>{30}|yes) This title is Tong]

[(#CHAPO|no) There is no short description]
[(#CcHAPO | and{#TEXTE}) There is a short description, and a
text]

[(#CHAPO | and{#TEXTE} |non) The two do not exist at the
same time]

[(#CHAPO | or{#TEXTE}) There is either a short description,
a text, or both]

[(#CHAPO | or{#TEXTE} |non) There is neither one nor the
other]

[(#CHAPO | xor{#TEXTE}) There is one, or the other, but not
both, and not neither]

[(#CHAPO | xor {#TEXTE} |non) Neither or both, but not just
one of the two]

59

60

Includes

To facilitate the maintenance of generated code, it is important to be able
to share re-usable code. This is achieved through the use of included code
segments.

Includes within the templates

Creating and using includes — reusable code segments — makes it easier to
maintain your templates. In general practice, certain segments of the HTML
pages on your site are identical, regardless of the type of page. This is often the
case when displaying a portfolio of images, for a navigation menu, for keywords
attached to a section or an article, for meta tags in the HTML body, or footer
text and links at the bottom of each page.

Any existing SPIP template code can be included within another using the
following syntax:

<INCLURE{fond=file_name}{passed parameters} />

Typically, the only parameters passed are the current or a specific id_rubrique,
id_article or similar identifier, the current or a specific language code, or the
keyword “doublons” to permit a data context to recognise an overlapping
environmental data duplication.

Passing parameters to includes

You can pass one or more parameters to code segments that have been
included in a template. By default, nothing is passed to included code except
the processing date. To pass parameters to the compilation context of the
template, they must be explicitly declared when calling the include:

<INCLURE{fond=include_template}{parameter} />
<INCLURE{fond=include_template}{parameter=value} />

The first example with {parameter} only retrieves the value of #PARAMETER
and passes it to the compilation context in the variable parameter. The
second example assigns a specific value to that parameter variable. In both
cases, within the included code, we can retrieve the value by reference using
#ENV{parameter}.

Passing the entire current context
The {env} parameter can be used to pass the entire template compilation
context to the code that is being included.

Example

// file A.html
<INCLURE{fond=B}{type}{key=# newt} />
// file B.html
<INCLURE{fond=C}{env}{colour=red} />
// file C.html

Type : #ENV{type}

Keyword : #ENvV{key}

Colour : #ENV{colour}

If we call the page spip.php?page=A&type=animal, that would pass
the type and key parameters to the B. htm1 template segment. This third
example passes everything it has received and adds another parameter
colour when it calls the C.htm1 template segment.

Within the C. htm1 template, we then see that it is possible to retrieve all
of the parameters that have been passed.

ol

62

Ajax

SPIP allows you to easily reload parts of a page using AJAX.

AJAX paginations

Includes which have the {ajax} criteria are used to reload only the part of
the page that has been included. Most of the time, you must also include the
{env} criteria whenever there is a pagination mechanism within the included
code.

<INCLURE{fond=inclure/file}{env}{ajax} />

When we combine this include criteria with the #PAGINATION tag, the
pagination links will then automatically become AJAX links. More specifically,
all of the links in the included template code are contained within a CSS class
named pagination.

<p class="pagination">#PAGINATION</p>

Example

List the five most recent articles. This include lists the most recent articles
in groups of 5, and displays a pagination block.

<INCLURE{fond=modeles/list_recent_articles}{env}{ajax} />

The file modeles/Tist_recent_articles.html uses:

<B_art>
#ANCRE_PAGINATION

<BOUCLE_art(ARTICLES){!par date}{pagination 5}>
<Ti>#TITRE</T11i>
</BOUCLE_art>

<p class="pagination">#PAGINATION</p>
</B_art>

Results: Ajax pagination, in groups of 5...

<a href="Recursion, 369"
title="art369">Recursion</Ti>

<a href="Parameter, 368"
title="art368">Parameter</Ti>

<p class="pagination">

<strong class="on">0

|

<a rel="nofollow" class="Tink_pagination noajax"
href="Paginations-AJAX?debut_art=5#pagination_art">5

|

<a rel="nofollow" class="Tink_pagination noajax"
href="Paginations-
AJAX?debut_art=10#pagination_art">10

|

<a rel="nofollow" class="1ink_pagination noajax"
href="Paginations-
AJAX?debut_art=205#pagination_art">...
</p>

AJAX links

In addition to the includes that contain a pagination mechanism, it is possible
to specify links to be reloaded using AJAX by adding the CSS class ajax to
those links.

<a class="ajax"
href="[(#URL_ARTICLE|parametre_url{tous,oui})]">Show all

Example

<INCLURE{fond=modeles/Tist_articles}{env}{ajax} />

63

64

The file modeles/list_articles.html: Shows or hides the
introduction to articles:

<BOUCLE_art(ARTICLES) {!par date}{0,5}>
<1i>#TITRE
[(#eNv{afficher_introduction}|=={oui}|oui)
<diVv>#INTRODUCTION</div>
]
</1i>
</BOUCLE_art>

[(#eENnv{afficher_introduction}|=={oui}|oui)
<a class="ajax"
href="[(#SELF|parametre_url{afficher_introduction,''})]">Hide
the introductions
]
[(#eENv{afficher_introduction}|=={oui}|non)
<a class="ajax"
href="[(#SELF|parametre_url{afficher_introduction,oui})]">Show
the introductions

]

Linguistic elements

The management and the creation of multilingual content is always a delicate
thing to organise. We will see in this section how to manage the multilingual
interface.

For the management of interface texts (as distinguished from editorial content),
SPIP has two elements: language strings that are known as "idioms", and a
multilingual tag called a "polyglot”.

The syntax of language strings

Language-specific strings, known as "idioms" within SPIP, are the codes
assigned to the existing translations in the files stored in the Tang/ directories
in SPIP, plugins or in specific template files.

To reference a language string, you only need to know its corresponding code:
<:bouton_ajouter:>

<:navigation:>

The general syntax is:

<:key:>
<:prefix:key:>

Language files
The language files are stored in the Tang/ directories. These are PHP files
named with a prefix and a language code: prefix_xx.php.

Content of the files
These PHP files each declares a mapping table. Each key has its
corresponding value. Any and all problematic language characters are
transcribed using the HTML entities (for accented letters, for example), and
some languages have the values written in unicode html entities (e.g. for
Japanese, Arabic, etc.).

<?php

65

$GLOBALS[$GLOBALS['idx_Tlang']] = array(
'key' => 'value',
'key2' => 'value2',
// ...

E

Example

Here is an extract from the French language file for the template of this
site (documentation_fr.php):

<?php
$GLOBALS[$GLOBALS['idx_Tlang']] = array(
//C
'choisir'=>"choisir...",
'conception_graphique_par'=>"'Thème graphique
adapté de ',

//E
'en_savoir_plus' => 'En savoir plus !',
/]
)
The equivalent extract from the English version

(documentation_en.php)would look like this:

<?php

$GLOBALS[$GLOBALS["idx_Tlang']] = array(
//¢
'choisir'=>"'select...',
'conception_graphique_par'=>'Graphical theme based on

//E
'en_savoir_plus' => 'Find out more!",

Jfcoc

Using the language codes
Any language idiom (externally defined character strings) can be referenced in
a SPIP template file using this syntax:

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

<:prefix:code:>

Looking for a code in several files

It is possible to search for a code in several language files. By default, if the
prefix has not been supplied, SPIP will look in the TocaTl_xx.php files, then
the spip_xx.php files, and finally the ecrire_xx. php files. If it does not find
the code in the language requested, it then looks in the French language. If it
still does not find the code, it will display the language code itself (but replacing
underscore characters with spaces).

You can specify that the search should operate over several files with the
following syntax:

<:prefixl/prefix2/.../prefixN:choisir:>

Overwriting a language file

To overwrite the language items already present in a SPIP language file, for
example ecrire/lang/spip_xx.php or in a plugin language file Tang/
plugin_prefix_xx.php, you only need to create a squelettes/
Tocal_xx.php file and insert any modified or new items into that file. SPIP
automatically uses such "local" files as taking precedence over the others
mentioned above.

Such an operation is often used for locale specific overrides - for instance, in
France there are regional divisions known as "départements" and "régions",
whereas in Switzerland, it might be more appropriate to rename that same field
as a "canton".

Example
Select the right documentation!

<:documentation:choisir:>

If bouton_ajouter is not found in the "documentation" language file,
then look for it in the "spip" language file, and failing that, in the "ecrire"
language file:

67

68

<:documentation/spip/ecrire:bouton_ajouter:>

The complete syntax of language codes
The complete syntax is as shown below:

<:prefixe:code{param=value}|filtre{params}:>

Parameters

The language codes can receive parameters which will be inserted into the
values at the time of translation. The parameters are then written in the
language files between at (@) signs.

A language code might therefore be:

'creer_fichier'=>"'Create the @fichier@ file?',

Calling with parameters
We could call a parameter as below:

<:documentation:creer_fichier{fichier=readme.txt}:>

Filtering language codes
It's not a commonly used practice, but it is possible to pass language codes
through filters just as if they were SPIP tags, for example:

<:documentation:long_item_description|couper{80}:>

Using language codes in PHP
A function has been created in PHP to retrieve the translations of the language
codes: _T.

It is used very simply as shown below:

_T('code');
_T('prefix:code');

_T('prefixl/.../prefixN:code');
_T('prefix:code', array('param'=>'value'));

Character strings during development

You may sometimes run into the _L function, which is used to signify:
"Character string to be assigned a language code when development is nearly
finished". The general idea, is that during development of SPIP or plugin
functionality, the language strings may change quite frequently. In order to
distinguish strings which have already been translated in the language files
from those that have just recently been created, we generally apply the _L
function.

_L('This text will need to be codified and translated!');

When the code development has stabilised, a search through the code for
uses of the "_L" function makes it easy to replace such character strings with
appropriate language codes (and then use the _T function instead).

Example

The "Tickets" plugin has a language file named 1ang/tickets_fr.php
which contains (amidst other code):

$GLOBALS[$GLOBALS['idx_Tang']] = array(

/] ...
'ticket_enregistre' => 'Ticket saved',
Dl

When someone creates a new ticket, the feedback form indicates that
it has actually been saved by sending the language string to the
message_ok parameter of the ticket writing form:

$message['message_ok'] = _T('tickets:ticket_enregistre');

// being = "Ticket enregistré" if it were in
French.

69

http://www.php.net/array
http://www.php.net/array

/0

Polyglots (multi tags)

A <muTti> tag (in the HTML sense of the word), usable both for templates and
in content written by editors, makes it possible to select a particular piece of
text based on the requested (or currently default) language.

It's syntax is:

<multi>[frlen francais[en]in english</multi>

This means that multilingual elements can easily be written within templates
without needing to use language codes and strings as discussed in previous
articles in this section.

Usage by content editors

This syntax is mostly used by content editors (or through means of a data-entry
plugin that does the work automatically!) to translate a site when there are only
a few (2 or 3) languages to be translated. <multi> is therefore more generally
used on the content creation side rather than in construction of the templates. If
such a <muTti> block does not contain an entry for a specified language, then
the first entry within that block will be used as the default.

Multilingualism

SPIP is designed to manage a multilingual website. We can distinguish several
possibilities for what a multilingual website might mean:
» Having the language of the interface that adapts to the visitor (for
example, displaying dates or writing words in the correct direction),
* Having content in multiple languages, not just the interface (for example a
version of the site is in French, another in English),
* Or why not a mixture of both (interface in Arabic with text in French ...)

SPIP has various tools and syntaxes to achieve all these ends.

Multilingual possibilities
There are a number of ways of developing a multilingual site with SPIP, for
example:
» create a sector (a section at the root of the site) for each language, with
completely autonomous content,
» create the site in the main language and define translations of the articles
in the various language(s) desired,
» or even define the language for each section of the site or for each article.

Each of these solutions has its own advantages and disadvantages, and
the webmaster's choice of which method to use will largely not affect the
construction of the template files (squelettes). In the following pages, we will
review some of the tools used by the page templates for delivering multilingual
content.

More

An excellent discourse on multilingualism was compiled by Alexandra
Guiderdoni for the SPIP Party in Clermont-Ferrand in 2007. Reading it will
benefit anyone who wishes to understand the subtleties or who needs to
ask themselves the right questions during the construction of a
multilingual site (in French only): http://www.guiderdoni.net/SPIP-et-I...

/1

http://www.guiderdoni.net/SPIP-et-le-multilinguisme.html

/2

The environment’s language

SPIP passes the language requested by the site visitor to the first template,
which can be retrieved by using the #ENV{1ang} function within a template.
By default, this will be the main language of the site, but it can be changed
using the #MENU_LANG form, which lists the predetermined languages for your
site’s multilingual content.

Whenever you use the #MENU_LANG form, the language selected is saved in
a cookie and a redirection is made for the current page with the Tang URL
parameter assigned to the selected language. The lang parameter that is
passed will then be accessible by SPIP. It will then also be possible to use the
cookie later to force the display language.

The language may otherwise be specified explicitly within a template file, by

using the Tang criterion:

<INCLURE{fond=A}{1ang=en} />

The language of an object

Some editable objects in SPIP, such as sections and articles , have a language
field stored in their corresponding SQL tables, which makes it possible to
specify in which language they have been written (or to which language they
belong).

We can find out the language of the current section or article by using the
#LANG tag within a RUBRIQUES or ARTICLES loop.

When the current section does not have a specific language assigned, then
that of its parent section is returned, and failing that, the main language of the
site.

Example
Display the articles and the languages of the first 2 sections in the site:

Your language: #ENV{lang}

<B_rubs>

<BOUCLE_rubs (RUBRIQUES) {racine}{0,2}>
<Ti>#TITRE : #LANG
<B_arts>

<BOUCLE_arts(ARTICLES) {id_rubrique}>
<Ti>#TITRE : #LANG</T11i>
</BOUCLE_arts>

</B_arts>
</1i>
</BOUCLE_rubs>

</B_rubs>

Results:

Your Tlanguage : fr

en : en

Notes about this documentation : en</Ti>

</1i>
fr : fr

<1li>Notes sur cette documentation : fr</1i>

</1i>

Special language criteria

Some special loop criteria make it possible to retrieve articles in a specifically
desired language.

lang

First of all, the quite simple {1ang} criterion enables us to select the visitor's

language or a specific language:

73

74

// language of the visitor

<BOUCLE_art(ARTICLES){lang}> ... </BOUCLE_art>

// English language (en)

<BOUCLE_art(ARTICLES){lang=en}> ... </BOUCLE_art>
traduction

The {traduction} criterion enables us to list the various translations of an
article:

<BOUCLE_article(ARTICLES) {id_article}>

<BOUCLE_traductions (ARTICLES) {traduction}{par lang}>
<1i>[(#LANG| traduire_nom_langue)]</11i>
</BOUCLE_traductions>

</BOUCLE_article>

In this case, all the translations of an article will be displayed (including the
current article, which could be excluded by specifically adding the {exclus}
criterion).

origine_traduction

This criterion enables us to retrieve the original source article for a particular
translated article, that being the one that serves as the source reference to the
other translations. To show all of the source articles, use:

<BOUCLE_sources (ARTICLES) {origine_traduction}>
#TITRE (#LANG)

</BOUCLE_sources>

To show the original translation for an article (the one in the current context):

<BOUCLE_article(ARTICLES){id_article}>
<BOUCLE_origine(ARTICLES) {traduction}{origine_traduction}>
#TITRE (#LANG)
</BOUCLE_origine>
</BOUCLE_article>

Example

Display an article in the visitor's language where possible, and if not, then
in the main language.

We start by listing, for a section, all the articles which serve as sources for
the creation of translations. We then continue by checking if a translation
exists in the language requested by the visitor. Depending on the result,
we display the title of the translated article or that of the source article.

<BOUCLE_artl(ARTICLES){id_rubrique}{origine_traduction}>
<BOUCLE_art2 (ARTICLES) {traduction}{lang=#ENV{lang}}>
// if a translation does exist
<Ti>#TITRE</Ti>
</BOUCLE_art2>
// otherwise use the original article's title
<Ti>#TITRE</Ti>
<//B_art2>
</BOUCLE_artl>

Forcing the language of the visitor’s choice

The parameter forcer_Tlang

The #MENU_LANG form stores the selected language in a cookie. This cookie
can then be used to re-display the site in the language that the user has
chosen. One of the ways of doing this is to define the forcer_Tang global
variable in the options file.

$GLOBALS['forcer_lang'] = true;

Specifying this parameter indicates to SPIP that it should systematically
redirect a requested page by adding the lang URL parameter with the
language cookie value if there is one, and if not, then with the code of the site’s
main language.

This forcer_1lang global code, however, also has another action: at the same
time, it specifies that the language strings of the interface should display in
the visitor's language, and not in the language assigned to the articles and
sections.

75

/6

Another use of the cookie

Another possibility is to use the user’s preference, but not to force the
redirection through the Tang URL parameter, but rather by using SPIP’s
set_request function to add a calculated Tang parameter that SPIP will later
reuse when it calls the _request function.

Example

The example below, used in an options file, calculates the language to be
used. This calculation is made in two steps:

« check if the URL is of the form http://name.domain/
Tanguage/rest_of_the_url, where "language" is one of the
languages defined for the site ("fr", "en" or "es" for example) and in
such a case, use the language thus discovered,

» otherwise, the utiliser_langue_visiteur() function uses the
cookie language, otherwise use the language of the browser.

And finally, if the language calculated is different from the cookie, then the
cookie is recreated.

// Systematically add the context original language.
if (!$Tangue = _request('lang')) {
include_spip('inc/Tang');
$langues = explode(',",
$GLOBALS['meta'] ['Tangues_multilingue']);
// if the language 1is defined in the url (en/ or fr/
), then use it
if (preg_match(',A'
$GLOBALS['meta']['adresse_site'] . '/('
join('|',$langues) . ')/,", 'http://'
$_SERVER["HTTP_HOST'].$_SERVER['REQUEST_URI'], $r)) {
$langue = $r[1];
changer_Tlangue($1angue);
} else {
$1angue = utiliser_langue_visiteur();
if (!in_array($langue, $langues)) {
//$1langue = "en"; // pour ne pas s'embeter !
$1angue = $GLOBALS['meta']['Tangue_site'];
}
}
// store it in $_GET

http://www.php.net/explode
http://www.php.net/preg_match
http://www.php.net/join
http://www.php.net/in_array

set_request('lang', $langue);

}

// store the language as a cookie...

if ($langue != $_COOKIE['spip_lang']) {
include_spip('inc/cookie');
spip_setcookie('spip_lang', $langue);

Choosing the navigation language
By default, when you navigate to view an English article, the interface
components are translated into English.

By using the language selection form #MENU_LANG, this will change the
interface elements by default and for the articles in the selected language.

Unless we are already in an article for a specific language, English for example,
and therefore already using the English interface and with the language menu
displaying "English", then if we request to display that page in French by using
the language menu, the URL for the page will now add a parameter Tang=fr,
but in fact nothing actually changes for the site visitor, with both the article itself
and its interface remaining in English: what is actually happening, is that it is
the article’s own context which has taken priority over the visitor's request.

We could also see the opposite case though, displaying the interface in French,
but reading the article in English anyway. In order to make the interface behave
independently to the current article’s or current section’s language, you will
need to define the global variable forcer_Tang in the mes_options file:

// enforce the language of the visitor
$GLOBALS['forcer_lang']=true;

77

78

Forcing a change in the interface language

As a final note of importance regarding multilingualism, some people may want
to have a mix of languages between the interface and the content, yet still wish
to maintain some consistency. More specifically, many would like to display
the articles in the source languages if they have not as yet been translated
into the requested language. In such cases, you will need to activate the
forcer_1lang setting.

Nonetheless, when displaying an article, it is possible to list the other various
existing translations, as is done in the SPIP model code modeles/
articles_traductions.html, where the generated link does not change
the interface language, given that forcer_Tlang maintains the visitor's
language.

If you would prefer that clicking on a translation link implies changing the
interface language as well (into the same language as that of the translated
article), then you will need to edit the model code for
articles_traductions.html or create a new version. We then use the
"converser" action enabling the generation of a special link which redirects to
the desired article in the desired interface language:

[(#vAL{converser}
|generer_url_action{[redirect=(#URL_ARTICLE
|parametre_url{var_lang,#LANG})]})]

Example of a complete (and complex!) model:

This is a model that lists the various translations of an article. If it is not the
translation currently being viewed, a link is proposed indicating the translation
language.

<BOUCLE_article(ARTICLES){id_article}>
<BOUCLE_traductions (ARTICLES) {traduction} {par lang} {','}>[
(#TOTAL_BOUCLE |>{1}|?{" '}D
<span lang="#LANG" xml:Tlang="#LANG" dir="#LANG_DIR"[
class="(#EXPOSE)"]>
[(#EXPOSE{'',<a href="[(#VAL{converser}
|generer_url_action{[redirect=(#URL_ARTICLE
|parametre_url{var_lang,#LANG})]})]1"
rel="alternate" hreflang="#LANG" [
title="(#TITRE|attribut_html|couper{80})"]1>3})]
[(#LANG| traduire_nom_1langue)]

The templates

#EXPOSE{'',}

]</BOUCLE_traductions>
</BOUCLE_article>

/9

&0

SQL joints between tables

A joint in SQL is what allows information to be retrieved from multiple tables
combined in a single query. It is possible to perform certain joints using SPIP’s
loop syntax.

Automatic joins

Whenever a loop is requested to use a criteria which does not belong to the
loop’s own primary table, SPIP automatically tries to find a linked table which
contains the requested field.

SPIP has two methods to find linked tables: either through links that are
declared explicitly, or ones that are calculated.

Example

Retrieve the documents which are inserted into the body text of articles
or other editorial content (as with a <docXX> type model), and which
are not just linked to that object. The vu field belongs to the
spip_documents_11ens table, so ajoin is created to that table to obtain
the desired result.

<BOUCLE_doc (DOCUMENTS) {0,10} {vu=oui }>
- #FICHIER

</BOUCLE_doc>

Explicit join declarations

The links between tables are declared within SPIP in the ecrire/public/
interfaces.php file. Further declarations can be added with the
"declarer_tables_interfaces" pipeline.

Such a declaration might look like:

// suggest a join between sections and documents
$tables_jointures['spip_rubriques'][]= 'documents_liens';

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/interfaces.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/interfaces.php

// suggest a join between articles and authors, specifying
the join field explicitly
$tables_jointures['spip_articles']['id_auteur']=
'auteurs_articles';

This shows the links that are possible between tables, When 2 tables can have
several fields to link between them, the example above shows how to specify
the linking field precisely.

Exceptions

It is even possible to create joins by calling non-existent fields, as demonstrated
by the sample criterion {titre_mot=yy}, which can lead to a join on the
"spip_mots" table, even though the "titre_mot" SQL field does not exist in that
table. This is done as shown below:

$exceptions_des_jointures['titre_mot'] = array('spip_mots',
"titre');

Automating joins

When they have not been explicitly declared to SPIP, joins are calculated
where they are possible. To do this, SPIP compares the names of the fields of
the various tables.

For example, if an AUTEURS loop looks for a criteria field that is not in its table,
perhaps {prenom=Daniel} for example, SPIP will go and look in the other
tables that it knows of and which have fields with the same names as the auteur
table (like the id_auteur key field), to see if such tables have the "prenom"
field being requested. If one of the tables does have that field, then a join will
be made between these two tables.

For example, if a custom table AUTEURS_ELARGIS (extended_authors) exists
(as it does for the "Inscription 2" plugin) with both of the fields "id_auteur”
and "prenom", a join would be made to enable the previously mentioned loop
criterion to operate correctly.

&

http://www.php.net/array

82

object, id_object

SPIP 2.0 introduced a new method of searching for joins. The primary keys
of one table, in this case "id_auteur" for the spip_auteurs table, as well as
being searched for in the field names of the other tables, are also searched
for in tables that have the pair of fields "object" and "id_object", where
"objet=auteur" in our example. In the current SPIP standard database schema,
this is actually the case for the spip_documents_11ens table.

Forcing joins

SPIP’s automatic detection capabilities are sometimes limited, and so two
syntax variants are offered for forcing table joins or the fields of the tables to be
used.

// forcing a particular table
<BOUCLE_table(TABLE1l table2 tablen){...}>
// forcing a field in a table
<BOUCLE_table(TABLE) {table.field}>

Example

These two loops select articles where an author has a name containing
"na" (like "Diana", "Joanna", etc.).

<BOUCLE_art(ARTICLES auteurs_articles
auteurs){nom==na}{0,5}>

- #TITRE / #NOM

</BOUCLE_art>

<hr />
<BOUCLE_art2 (ARTICLES) {auteurs.nom==na}{0,5}>
- #TITRE / #NOM

</BOUCLE_art2>

Note, however, there is a considerable difference between these
examples: at present, only the first one declaring all of the tables will make
it possible to display a field #FTELD from another table. Therefore, #NOM
will only be provided in the first loop.

Accessing multiple databases

SPIP can easily read any MySQL, Postgres or SQLite databases, and displays
their content within structures defined in the SPIP templates.

Declaring another database

In order to access another database, SPIP needs to have access codes to that
database. At the time of writing, secondary declared databases are correctly
handled in read mode. Writing to such databases, however, is not yet handled
by SPIP 2.

To declare another database, there are two possible solutions:
» use the standard graphical interface defined for that purpose
(Configuration > Site maintenance > Declare another database)
» write your own connector file following the syntax defined for that
purpose, and store it in the config/ directory (or the directory defined by
the constant _DIR_CONNECT).

The connector file config/xx.php
For a connector file called tarabiscote.php, its content would be:

<?php

if (!defined("_ECRIRE_INC_VERSION")) return;
define('_MYSQL_SET_SQL_MODE', true);

$GLOBALS/['spip_connect_version'] = 0.7;

spip_connect_db('Tocalhost',"'"', 'username', 'password', 'tarabiscote', 'mysql’,
'spip’, "t
?>

We would then call the spip_connect_db() function using the following
arguments in that order:

the address of the sql server

the connecting port number, if necessary

the username

the password

the database name

the server type (mysql, pg, sqlite2, sqlite3...)

the table prefix

are users connected using Idap ?

® N oA WN =

&3

http://www.php.net/defined
http://www.php.net/define

&4

Accessing a declared database
Every additionally declared database can be accessed using SPIP loops as
follows:

<BOUCLE_externe(name:TABLE)>

The name parameter corresponds to the name of the connector file.

Example

In testing with WordPress some time ago, the author was able to establish
a functional database link. By creating a wordpress . php connector file,
it was possible to recover the last 5 published articles with the code shown
below:

<BOUCLE_articles(wordpress:WP_POSTS){0,5}{!par
post_date}{post_status=publish}>
<h2>#POST_TITLE</h2>
<div class="texte">#POST_CONTENT</div>
</BOUCLE_articles>

The "connect” URL parameter
When it has not been specified explicitly with a connector file for use within
loops, SPIP uses the default connector file (often named connect. php).

For all of these loops, we can request a specific connection that will then be
applied by using the URL parameter connect=name.

Example

Say you have 2 SPIP sites with different templates (site A and site B).
By copying the connector file for site A over to site B (and renaming it
as A.php) and vice versa for site B, you can then navigate the sites in
various combinations:

« http://A/ (the contents of site A appear using template A)

* http://B/ (the contents of site B appear using template B)
* http://A/?connect=B (the contents of site B appear using

template A)
* http://B/?connect=A (the contents of site A appear using

template B)

In summary, passing connect=name in the URL makes it possible to use
the "name" connector file for all the loops in the templates that do not have
an explicit connector defined, such as <BOUCLE_a(ARTICLES)>.

Inclure with a connector parameter
It is possible to pass a particular connection as a parameter when using an

include:

<INCLURE{fond=recent_articles}{connect=demo.example.org}>
[(#INCLURE{fond=recent_articles, connect=demo.example.org})]

An include does not automatically pass the parent connection: to propagate a
connection, you need to specify it as a criterion in the include itself:

<INCLURE{fond=recent_articles}{connect}>
[(#INCLURE{fond=recent_articles, connect})]

85

Contents of the directories

This chapter will clarify the purpose of the various directories used by
SPIP. In some cases, it will address the manner in which new elements
are created in these directories.

&7

The list of directories

Name Description
config (p.90) Database connection identifiers and site options

ecrire/action Handles the actions which affect the contents of the
(p-93) database

ecrire/auth Manage user authentications
(p.93)

ecrire/balise Declarations of dynamic tags and generic tags
(p-93)

ecrire/base APIs relating to the database and SQL table declarations
(p.94)

ecrire/charsets Character encoding translation sets

(p.94)

ecrire/ Configuration components for SPIP’s private (back-end)
configuration area

(p-94)

ecrire/exec Viewing pages in the private area (PHP code)

(p-94)

ecrire/genie Periodic tasks to be run by the (cron) "wizard"
(p.94)

ecrire/inc Libraries and various APls

(p.95)

ecrire/install SPIP’s installation procedures

(p-95)

ecrire/lang The localisation (language) files

(p-95)

ecrire/maj The database update procedures

(p-95)

ecrire/ Functions for notifications and contents of notification
notifications emails

(p.95)

ecrire/plugins Code relating to the installation and management of
(p.96) plugins

ecrire/public The compiler and cache manager
(p.96)

Name

ecrire/req
(p.96)

ecrire/
typographie
(p-96)

ecrire/urls
(p.97)

ecrire/xml
(p.97)

extensions
(p-90)

IMG (p.91)
lib (p.91)
local (p.91)

plugins (p.91)

prive/contenu
(p.98)

prive/editer
(p.98)

prive/exec
(p.98)

prive/
formulaires
(p-98)

prive/images
(p-98)

prive/infos
(p.99)

prive/javascript
(p-99)

prive/modeles
(p-99)

prive/rss (p.99)

Contents of the directories

Description

The database drivers

Typographical corrections

URL rewriting conventions

XML parser and verifier

The directory for plugins which can not be deactivated

Storage of site documents
External libraries added by plugins

Storage location for caches of images, CSS and Javascript
files

The plugins directory

Templates for viewing objects in the private area
Templates used for the editing forms for SPIP objects
Viewing pages in the private area (coded as SPIP template
files)

Editing forms for editorial objects

Image files used in the private area

Templates for the information panels displayed for SPIP
objects in the private area

JavaScript scripts

The standard model "snippets" provided by SPIP

Templates that generate the RSS feeds for monitoring
editorial changes made in the private zone

&9

Q0

Name Description

prive/stats Templates used for displaying site statistics
(p-99)
prive/ Templates used for CSV exports
transmettre
(p.100)
prive/vignettes Icon images for attached documents
(p-100)
squelettes Customisations of templates and other standard files.
(p-92)
squelettes-dist The default set of site templates
(p-92)
tmp (p.92) Temporary files and cache files

config

The config directory stores configuration details for the site, such as
identifiers for the standard SPIP database connection (in connect.php) or
for other external databases, the mes_options.php file used to define site
options, and the security screen (ecran_securite.php) which makes it
possible to rapidly recover from some system failures that have been observed.

extensions

The extensions directory is used to define plugins which are pre-installed,
pre-activated and which cannot be later deactivated, as part of the standard
SPIP installation. All that is required is to store the desired plugins in this
directory.

In the SPIP standard distribution, some plugins are included by default:
* "Compresseur", to compress Javascript, CSS and HTML files,
» "Filtres images et couleurs" (Image and colour filters), providing functions
for graphical and typographical manipulation,
» "Porte Plume", offering an editor’s toolbar to insert SPIP shortcuts,
» "SafeHTML", for cleaning out unwanted or dangerous items from forum
contributions and syndicated site content feeds (RSS).

IMG

The IMG/ directory contains all of the editorial documents added to the site,
classified (by default) according to their file extensions in to various sub-
directories. It retains the image-related directory name from earlier days when
additional "documents" for SPIP only involved additional image files.

lib

This directory (which is not created in the default install) enables plugins to
share external common libraries, which are therefore to be downloaded and
extracted into this directory.

local

This directory houses the caches that are generated for typographical images,
image resizing, graphics manipulations, and CSS and JavaScript
compressions; that is, all the caches that require HTTP access.

For more information, please refer to the following articles:
* The CSS and JavaScript caches (p.223)
» The image processing cache (p.223)

plugins

The plugins directory is used for installing plugins which will be activated or
deactivated from the private area’s plugin configuration administration page.
Plugins are typically downloaded using FTP and extracted into this directory,
one sub-directory per plugin. The existence of a directory called plugins/
auto that is write accessible will enable webmasters to automatically download
plugins from within the private area interface without the need to use FTP or to
UNZIP the plugins manually.

The most recent collection of plugins is located at http://files.spip.org/spip-
zone/, but other plugins may be available from other sites. As with any
externally contributed code, be very careful what you install, and if in doubt,
only use plugins from SPIP’s own collection.

o

http://files.spip.org/spip-zone/
http://files.spip.org/spip-zone/

Q2

squelettes

The squelettes directory is not created by the SPIP default installation.
Once created manually, it makes it possible for the webmaster to override the
original files included in SPIP and any installed plugins, these mainly being
the default templates for SPIP. This directory is also used to create your own
special template files and to store any files that are specific to your site. The
advantage of using this directory for customisation is to prevent your changes
being overwritten any time that you update SPIP itself or any of the plugins that
you might be using.

Just as much as you need to create this directory manually to store customised
versions of files that are normally located in the squelettes directory, so must
you also create sub-directories for any overriding files you create that would
normally exist in sub-directories of the standard squelettes (or plugin) directory.

squelettes-dist

This directory contains the set of template files supplied with the standard SPIP
installation. It also contains sub-directories of files for the public forms and
models (snippets). Do not delete or overwrite these files if you can avoid doing
so, as any changes you make to these files will be lost if you update your
version of SPIP - you are advised to using the squelettes (p.0) directory for your
customisations.

tmp
This directory contains any files of a temporary nature, including those for
caches and logs, and which are not accessible via HTTP. It contains sub-
directories specially created for:

» the cache (cache),

« any backups made through the admin interface (dump),

» sessions for registered users (sessions),

» documents sent by FTP (upload)

« visits statistics (visites)

ecrire

This directory contains all of the SPIP code to make the engine tick!

ecrire/action
This directory is intended to store code used to modify the contents of the
database. Most of the actions are secured, in such a way as to confirm both
that:

» the author performing the action is authorised to do so, and

« the action is actually being requested by the person currently logged in.

Upon completion of these processes, a redirection is made to a URL that
generally makes reference to the recent action call. Please refer to the section
on actions and processes (p.205) for further details.

ecrire/auth

The ecrire/auth directory contains the various scripts used to manage user
connections. One file manages authentication using the SPIP methodology,
and the other works for an LDAP directory.

The authentication processes are relatively complex as they involve numerous
security checks. An API defines the various stages of authentication and the
creation of new users. Please refer to the section on authentication (p.209) for
further details.

ecrire/balise
The ecrire/balise directory is used to define
* dynamic tags, meaning those that involve calculations for every page
reference and generation, and
* generic tags, meaning those starting with the same prefix and performing
shared actions (#URL_, #FORMULAIRE_, ...)

The static tags, however, are declared in the ecrire/public/balises.php file, or
when they belong to plugins, within the function definition files for each plugin.

Q3

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/balises.php

Q4

Please refer to the section on tags (p.183) for further details.

ecrire/base

This folder contains code related to the database: the table definitions, SQL
abstraction functions, and functions used for creating and updating the SQL
tables.

A complete chapter is devoted to the database functions: SQL access (p.253).

ecrire/charsets
This directory contains the files used for translating character encodings,
generally called by the ecrire/inc/charsets.php file.

ecrire/configuration
This directory contains components used in the configuration pages of SPIP’s
private zone. Each file corresponds to one particular configuration frame.

ecrire/exec

The ecrire/exec directory is used to store the PHP files used to display
pages in the private zone using the 7exec=name parameter. However, it is
becoming increasingly common to use "regular" SPIP template files for these
pages, which are installed in the prive/exec (p.98) directory.

A detailed explanation is provided in the section devoted to Creating pages in
the private zone (p.190).

ecrire/genie

The ecrire/genie directory is used to store functions to run periodically by
the "génie" aka wizard (which are similar to but not quite the same as cron
tasks), each of which normally has a dedicated file to be run for each such task.

Please refer to the section on this subject: Periodic tasks (cron) (p.227).

ecrire/inc

This directory contains most of the PHP libraries created for use with SPIP.
Some of these libraries are systematically loaded for every SPIP site. This
is the case for ecrire/inc/utils.php, which contains the core and start-
up functions, and also for ecrire/inc/flock.php, which takes care of file
locking and access.

ecrire/install

The ecrire/install directory contains everything required for SPIP
installation. The various files in this directory comprise the installation steps and
are called from the ecrire/exec/install.php file.

ecrire/lang
The ecrire/lang directory contains the various translation files for the SPIP
public and private interfaces. These translations are provided by the use of 3
files for each language (where xx is a specific language code):
* public_xx.php translates text strings appearing in the public template
files,
» ecrire_xx.php translates text strings in the private zone (action, exec),
* spip_xx.php translates... the others (inc,prive,formulaires,modeles) ?!

ecrire/maj

This directory contains the update routines for the database as it progresses
through different versions of SPIP. For older versions, it also contains the
structure of the original database. This makes it possible to re-import SPIP
backups from previous versions (back to SPIP 1.8.3) normally without any
problems.

95

96

ecrire/notifications

This directory contains the various functions called by SPIP’s natifications
APl in the ecrire/inc/notifications.php file. The notifications make it
possible (by default) to send emails after certain events occur within SPIP, such
as the arrival of a new message in a forum or the proposal of a new article for
publication.

This directory also stores certain SPIP templates that are used to build the
email text messages included in these notifications.

ecrire/plugins

The ecrire/plugins directory contains all of the code used for SPIP’s
plugins, as well as code for the extensions (plugins which can not be
deactivated) and external libraries (the 1ib/ directory). This naturally includes
the code for listing the plugins, determining their dependencies, processing
their pTugin.xm1 files, and managing the various caches used by the plugins
(please read the information about the plugins cache (p.221))...

ecrire/public

The rather badly named ecrire/public directory contains the various files
involved in searching, analysing, compilation and debugging of the SPIP
templates, the creation of the pages generated by the templates, and the
management of their corresponding caches.

Some further details on the compilation of the templates (p.210) are available
in the corresponding section.

ecrire/req

The ecrire/req directory contains the translators used to transform SPIP’s
SQL abstraction functions and queries for the corresponding database
engines.

Four drivers are available: MySQL, PostGres, SQLite 2 and SQLite 3.

ecrire/typographie

This directory contains the typographical corrections for French and English,
applied by calling the typo function. This processing is required to resolve
typographical differences between how text is entered and how it is displayed,
such as the use of different character sequences for left and right quotation
marks in different languages, for example.

ecrire/urls

The ecrire/urls directory contains the code used to drive the URL rewriting
systems offered by SPIP (propre, html, arborescent...). The API for these
URL rewriting systems makes it possible to construct URLs based on a given
context and, in complementary fashion, to identify an object and its identifier
based on a user-requested URL.

Any custom-built objects added to SPIP may need to be addressed by
whatever URL rewriting method is selected for the site.

ecrire/xml

This directory contains the functions used for analysing XML strings and
transforming them into PHP arrays. A verification tool is also available so that
DTD page errors can be identified.

97

L)

prive
The prive directory stores all of the templates used in SPIP’s private zone, as
well as certain CSS stylesheets applied to the private zone.

prive/contenu

The prive/contenu directory contains the templates used to display the
contents of SPIP objects, such as for articles (the article.html file) in the
private zone.

prive/editer
The prive/editer directory contains the templates of the forms used for
editing the SPIP objects.

prive/exec

The prive/exec directory is used to store SPIP template files used for
displaying pages in the private zone using the ?exec=name parameter. This
directory is not used by the core of SPIP, but some plugins may use it.

A detailed explanation is provided in the section on creating pages in the
private zone (p.190).

prive/formulaires
The prive/formulaires directory contains the CVT editing forms for SPIP
editorial objects.

prive/images
This directory stores all of the images and icons that are used in the private
zone and those used during the installation procedures.

prive/infos

The prive/infos directory contains the templates for the information (and
sometimes action button) panels for SPIP objects in the private zone. These
panels typically include the object identifier, the object status, and some
statistics (e.g. the number of articles in a section, the number of times the article
has been visited, etc.).

prive/javascript

This directory contains the JavaScript scripts, including jQuery, that are used in
the private zone and for certain calls from the jquery_plugins (p.166) pipeline
from the public site as well.

prive/modeles

This directory contains the reusable SPIP code "snippets" that can be used
within object texts by site contributors, such as <imgXxX> and <docXX>. They
can also be used within other customised template files by using the #MODELE
tag.

prive/rss

These templates generate the RSS feeds for monitoring site changes in the
private zone, and are called by the prive/rss.html file with a URL
constructed by the bouton_spip_rss function (declared in ecrire/inc/
presentation.php).

prive/stats
Templates used for displaying the statistics maintained in SPIP’s internal
statistics files.

Q9

100

prive/transmettre
The prive/transmettre directory contains the templates used to generate
CSV data, called from the prive/transmettre.html template file.

prive/vignettes

This directory stores the various images that each correspond to an extension
for a class of attached documents. The #LOGO_DOCUMENT tag returns the
applicable icon if no specific icon has been assigned to an individual document.
Other functions related to these image vignettes are found in ecrire/inc/
documents.php.

extending SPIP

One long-term goal of SPIP has been adaptability. There are many
ways to refine and extend it according to the requirements of each
particular web site, or to create new functionality not included in the core
modules.

This section explains the ways that programmers can use to extend
SPIP.

101

102

Introduction
Templates, plug-ins, access paths, the _dist () functions and how to use and
override them... This section explains it all.

Templates or plug-ins?

Use the "squelettes” folder

The squelettes/ folder is used to store all the files required for the operation
of your site and to customise its graphic design: templates (or “squelettes”,
images, JavaScript and CSS files, PHP libraries, ...).

Or create a plug-in

A plug-in, stored in a folder like plugins/name_of_the_plugin/, can also
contain any or all of the files that your site might require, just like the
squelettes/ folder. Additionally, a plug-in supports some additional actions,
essentially those required to install and uninstall the plug-in.

So, is it best to write a plug-in or simply use the squelettes
folder?

Generally speaking, the squelettes/ folder is used to store everything that is
specific to a particular site. Only when a piece of code is generic and reusable
does it makes sense to package it as a plug-in.

Declaring options

When a visitor requests a page (whether or not it is in the cache), SPIP carries
out a number of actions, one of which is to load the “options” files. In these
files we can, for example, define new constants or modify global variables that
control the way SPIP operates.

These options can be created in the file config/mes_options.php or in
any plug-in by declaring the name of the file in plugin.xml like this:
<options>pTluginprefix_options.php</options>.

All options files (those of the site, and then those of all the plugins) are loaded
every time a page request is made in the public zone or the private zone, so
they should be as simple and as small as possible.

This example, from a contribution called “switcher”, will change the set of
templates used by the site (or, strictly speaking, the name of the templates
folder) depending on the value of the var_skel parameter in the URL.

<?php
// 'name' => 'template path'
$squelettes = array(

'2008'=>"'squelettes/2008",

'2007"'=>"squelettes/2007",
DE
// If a particular set of templates are requested (and
exist), set a cookie, otherwise delete the cookie
if (isset($_GET['var_skel'])) {

if (isset($squelettes[$_GET['var_skel']]))

setcookie('spip_skel', $_COOKIE['spip_skel']

$_GET['var_skel'], NuLL, '/');

else
setcookie('spip_skel', $_COOKIE['spip_skel'] = "',
-24*3600, '/');

3
// If a particular template path is permitted, define it as
the templates folder
if (isset($_COOKIE['spip_skel']) AND
isset($squelettes[$_COOKIE['spip_skel']]))
$GLOBALS['dossier_squelettes'] =
$squelettes[$_COOKIE['spip_skel']];
?>

Declaring new functions

The “_fonctions” files are loaded automatically by SPIP, but — unlike the
“_options” files (p.102) — only when it needs to evaluate a template to generate
a new page.

These files make it possible, for example, to define new filters that can be
used in templates. If you create a squelettes/mes_fonctions.php file
containing the following code, then you will be able to use the helTo_world
filter in your templates (useless though it is!):

<?php
function filtre_hello_world($v, $add){
return "Title:" . $v . ' // Followed by: ' . $add;

103

http://www.php.net/array
http://www.php.net/isset
http://www.php.net/isset
http://www.php.net/setcookie
http://www.php.net/setcookie
http://www.php.net/isset
http://www.php.net/isset

104

?>

| [(#TITRE|hello_world{this text is added afterwards})]

(displays "Title:title of the article // Followed by: this text is added afterwards")

To create such files in a plug-in, you need to add the name of the file in
your plugin.xml like SO:
<fonctions>pluginprefix_fonctions.php</fonctions>. Each
plug-in may contain any number of these declarations (and files).

Functions for specific templates

Sometimes, filters are specific to a single template. It is not always desirable to
load all such functions for each and every page. SPIP thus makes it possible to
load certain functions only when calculating a particular template.

Such a file should be created in the same folder as the template and named
after it, but with _fonctions.php instead of . htm1.

Consider the example from above again. If the file named squelettes/
world.html contains the code [(#TITRE|hello_world{this text is
added afterwards})], then the hello_wor1d function could be declared
in the squelettes/world_fonctions.php file. This file will only be loaded
when SPIP is generating a page based on the squelettes/world.html
template.

The concept of path

SPIP uses a large number of functions and templates, contained in various
folders. When a script needs to open a file to load a function or to read a
template, SPIP will search for it in one of a number of folders. The first matching
file found in one of these will be loaded and used.

The folders are perused in the order defined by the constant SPTP_PATH and,
optionally, using the global variable $GLOBALS [’dossier_squelettes’].

The default search path is, in order:
* squelettes/
+ the plug-in pTugin_B/ (which depends on “plugin A”)
 the plug-in plugin_A/
* squelettes-dist/
e prive/
e ecrire/

. ./

Overriding a file

One of the first possibilities to modify SPIP’s behaviour is to copy one of its
files from ecrire/ into a folder with higher priority (p.104) — a plug-in or
squelettes/ folder, for example — while preserving the folder hierarchy.

Thus, one could modify the way in which SPIP manages the cache by copying
ecrire/public/cacher.php to squelettes/public/cacher.php and
then modifying this copy. It is this modified copy which would be loaded by
SPIP as it — being in squelettes/ — has a higher priority than the original.

This technique must be used with full knowledge of the facts. While this
technique is very powerful, it is also very sensitive to changes in SPIP. If you
use this method, you may find it difficult or impossible to upgrade your site to
future versions of SPIP.

Overloading a _dist function

Many of the functions in SPIP are designed to be overridden. These functions
have the extension “_dist” in their name. All the balises (“tags”), boucTes
(“loops”), and criteres (“criteria”) are named like this and can thus be
overridden by declaring (perhaps in the file mes_fonctions.php) the same
function, but without the suffix “_dist” in the name.

For example, the ecrire/public/boucles.php file contains a function called
boucTle_ARTICLES_dist. It can be overloaded by declaring a function like
this:

function boucle_ARTICLES($id_boucle, &S$boucles) {

105

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/boucles.php

106

I oao

Some functions you should know

SPIP contains many extremely useful PHP functions. Some are used more
frequently than others and deserve a bit more explanation.

Name Description
charger_fonction (p.107) Finds a function

find_all_in_path (p.108) Finds a list of files

find_in_path (p.108) Finds a function

include_spip (p.109) Includes a PHP library

recuperer_fond (p.110) Returns the results of compiling a template
spip_log (p.112) Outputs additional data to the logs
trouver_table (p.113) Provides the description of an SQL table
_request (p.115) Retrieves a variable from the URL or a form.

charger_fonction

This charger_fonction() (translation: Toad_function()) function is
used to retrieve the name of an overloadable SPIP function. Whenever an
internal function with a _dist () suffix is overloaded (by recreating it without
that suffix), or whenever all of a file that contains such a function is overloaded,
then the correct function to be run must be retrievable at the time that that
function is to be executed.

This is what the charger_fonction() does. It returns the correct name of
the function to be executed.

$ma_fonction = charger_fonction('my_function', 'directory');
$ma_fonction();

The searching principle
The function operates as follows:
+ ifthe directory_my_function function has already been declared,
then that function is returned,
« else directory_my_function_dist,
« else try to load a file called directory/my_function.php then

107

108

» return directory/my_function if it exists,
- elsedirectory/my_function_dist,
» elsereturn false.

Example
Send an email:

$envoyer_mail = charger_fonction('envoyer_mail', 'inc');
$envoyer_mail($email_address, $subject, $text_body);

find_all_in_path

find_all_in_path() returns the list of files that match a specific pattern.
Like find_in_path() (p.108), these files are searched for in all the
directories defined in the SPIP file path.

$1ist_of_files = find_all_in_path($dir, $pattern);

Example

SPIP uses this function to get all the CSS files that the plugins add
to the private interface using the files named “prive/
style_prive_plugin_prefix.html". To do so, it uses the following line of PHP
code:

$Tist = find_all_in_path('prive/"',
'/style_prive_plugin_"');

find_in_path
The function find_in_path() returns the path of a particular function. This
function is searched for in the "SPIP path" (p.104).

It accepts 1 or 2 arguments:
» the name or relative path of a file (with its extension)

» optionally, the directory where it is stored.

$f = find_in_path("directory/file.ext");
$f = find_in_path("file.ext","directory");

Example

If the pattern/inc-special.html file exists, calculate $html as the
result of compiling this template. Otherwise $html is the result of compiling
pattern/inc-normal.html.

if (find_in_path("pattern/inc-special.htm1")) {
$html = recuperer_fond("pattern/inc-special™);
} else {
$html = recuperer_fond("pattern/inc-normal™);

}

include_spip

The function include_spip() includes a PHP file. The difference from PHP’s
normal include_once() is that the file is searched for in the SPIP path
(p.104), that is, in all the known directories and in the search priority order
specified in the SPIP path.

incTude_spip() accepts 1 or 2 arguments:
» the name or relative path of the file (without its .php extension)
» aflag (true by default) that indicates if the file is actually to be included, or
if only the path of the file is to be returned.

include_spip('fichier');

include_spip('dossier/fichier');

$address = include_spip('fichier');

$address = include_spip('fichier', false); // inclusion is
not performed

109

110

Example

// loads the file containing the functions used on
// the installation pages or error pages
include_spip('inc/minipres');

echo minipres('Bad Tuck!', 'An error has occurred!');
exit;

recuperer_fond

Another function which is extremely important within SPIP,
recuperer_fond(), is used to return the results of compiling a given
template. This is sort of the same as for <INCLURE{fond=name} /> used in
templates but in PHP.

It accepts from 1 to 4 parameters:
» the name and address of the source code file (without extension)
» the compilation context (key/value table)
» atable of options
» the name of the connection file for the database to be used

Simple usage
The data returned is the code generated by the compilation output:

$code = recuperer_fond($name, $context);

Advanced usage

The raw option set to true will provide, rather than just the generated code, a
table of items calculated by the compilation, which also includes the code (with
the key texte).

What does this table contain then? The text, the address of the template source
(tagged "source"), the filename of the PHP cache generated by the compilation
(tagged "squelette"), an indicator of the presence of PHP in the generated
cache file (tagged "process_ins"), and various other values included in the
compilation context (the language and data are automatically added since they
have not been passed as parameters).

http://www.php.net/exit

Example

Retrieve the contents of a file /incTure/inc-Tiste-articles.html
by passing the identifier of the desired section (rubrique) in the context:

$code = recuperer_fond("inclure/inc-Tiste-articles",
array (

'id_rubrique' => $id_rubrique,
D)

Using the raw option:

Here is a small test with a template called "ki.html" containing only the
text "hop". In this example, the results are output to a log file called (tmp/
test.log).

$infos = recuperer_fond('ki',array(),array('raw'=>true));
spip_log($infos, 'test');

These are the results that will be output to tmp/test. Tog:

array (
'texte' => 'hop

'squelette' => "htm1_1595b873738eb5964ecdf1955e8da3d2"’,

'source' => 'sites/tipi.magraine.net/squelettes/
ki.html"',

'process_ins' => 'html',

"invalideurs' =>

array (

'cache' = "',
Do
'entetes' =>
array (

'X-Spip-Cache' => 36000,
Do
'duree' => 0,
'contexte' =>
array (
'Tang' => 'en',
'date' => '2009-01-05 14:10:03'",
'date_redac' => '2009-01-05 14:10:03',
Vg

1l

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

12

spip_log
This function is used to record actions out to the log files (generally located in
the tmp/1og/ directory).

This function accepts 1 or 2 arguments. With one argument, it will write out to
just the spip.1og file. With two arguments it will write out to both a separate
log file and also to the spip.Tog.

<?php

spip_log($tableau);

spip_log($tableau, 'second_file');
spip_log("adding field $champ into the $table
table","my_plugin");

?>

When a table is passed to the log function, SPIP will write out the output from
print_r() into the log file. For each file requested, in this case spip (by
default) and second_file, SPIP will create or add the contents of the first
argument, but not just anywhere. If the script is run from the private interface,
it will write out to "prive_spip.log" or to "prive_second_file.log", otherwise it will
write to "spip.log" or "second_file.log".

The configuration file ecrire/inc_version.php defines the maximum size
of the log files. When a given log file exceeds this pre-determined file size, it
is renamed prive_spip.log.n (n will automatically increment). The number
of such files that may exist is also configurable. It is also possible to deactivate
the logs by setting one of these specified values to zero within the
mes_options.php file.

$GLOBALS["nombre_de_logs'] = 4; // maximum 4 Tlog files
$GLOBALS['taille_des_logs'] = 100; // maximum 100 KB each

There is also a _MAX_LOG constant (set to 100 by default) which specifies the
number of entries that each call from a given page may write to a log file.
With this default setting, after 100 calls are made to spip_log() from any
particular script, the log function will refuse to write any further content for that
script.

trouver_table

The trouver_table() function (base_trouver_table_dist)is declared
in ecrire/base/trouver_table.php and is used to obtain a description for an SQL
table. It provides a mechanism to retrieve the list of columns, keys, declared
joins and some other information details.

As an overloadable function, it is used with charger_fonction (p.107):

$trouver_table = charger_fonction('trouver_table', 'base');
$desc = $trouver_table($table, $serveur);

Its parameters are:

1. $table: the name of the table ('spip_articles’ or ’articles’)

2. $serveur: optional, the name of the SQL connection, which is by default
the same as that for the SPIP installation itself.

The $desc table returned is structured as follows:

array (
'field' => array('column' => 'description'),
'key' => array(
'PRIMARY KEY' => 'column',
'KEY name' => 'column' // or 'columnl, column2'
Do
'join' => array('column' => 'column'),
'"table' => 'spip_tables'
'id_table' => $table,
'connexion' => 'connection_name',
"titre' => 'column_title AS titre, column_language AS
Tlang'
DE;

» The field key is an associative table listing all of the table’s columns
and their SQL descriptions,

13

http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/trouver_table.php
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

4

» key is another table listing the primary and secondary keys,

« join lists the columns of any joins, if declared in the descriptions of the
principal or auxiliary tables

« table is the actual name of the table (without prefix: if the table prefix is
different from "spip", then it will be "spip_tables" that will be returned),

+ id_table s the given $table parameter,

* connexion is the name of the connection file, if different from that of the
installation,

* titreis an SQL SELECT declaration indicating where is the column title
or where is the column language (used amongst other things to calculate
the URLs); e.g. "titre, 1ang",or"name AS title, '' AS lang"

This function caches (p.221) the result of the analysis in order to avoid
repetitive disruptive access to the SQL server. To force a recalculation of this
cache, the function must be called with an empty string:

$trouver_table = charger_fonction('trouver_table', 'base');
$desc = $trouver_table('');

Note: Whenever a table is requested without the "spip" prefix, it is the name
of the table with the prefix assigned for the site that will be returned (so long
as the table is declared in SPIP). Requesting a "spip_tables" table will look for
the real existence of that table (the prefix is not replaced by that used for the
site). In the future, an option will probably be added to the trouver_table()
function, as there is already for sql_showtable (p.299) in order to be able to
automatically modify the prefix.

Example

The creer_champs_extras() function from the "Champs Extras"
plugin is used to create SQL columns described by the "ChampExtra"
object instances passed ($c->table is the name of the SQL table, $c-
>champ is that of the column). The function returns false if a column has
not been created:

function creer_champs_extras($champs) {

// the function updates the tables in question using
maj_tables()

24 Loool

// It then tests if the new fields have actually been
created:
// for each column to be created, check that is
actually exists now!
$trouver_table =
charger_fonction('trouver_table', 'base');
$trouver_table(''); // recreate the description of
the tables.
$retour = true;
foreach ($champs as $c){
if ($table = table_objet_sql($c->table)) {
$desc = $trouver_table($table);
if (lisset($desc['field'][$c->champ])) {
extras_log("Le champ extra '" . $c->champ
sur $table n'a pas ete cree :(", true);
$retour = false;

3
} else {
$retour = false;
}
}
return $retour;
}
_request

The _request () function is used to retrieve the values of variables sent by
the site visitor, either through a URL or through a posted form.

$name = _request('name');

Security principles
These functions must not be located just anywhere amongst the SPIP files, in
order to be able to carefully restrict the possible locations likely to be targeted
for pirating. The elements provided by user input must only be retrievable from
» action files (in the action/ directory),
 the private zone display files (in the exec/ directory),
« some very rare dynamic tag functions (in the bal1ise/ directory), or
« in the files that process web forms (in the formulaires/ directory).

15

http://www.php.net/isset

116

As an additional general rule, it is necessary to verify that the variable type
received is indeed in the expected format (to eliminate any risk of hacking, even
if SPIP already performs a first level cleaning of input data): for example, if
you expect a number, then you must apply the intval () function (which will
transform any text into its numeric value):

if ($identifiant = _request('identifier')){
$identifier = intval($identifier);
3

Retrieval from a table
If you want to retrieve only certain specific values that exist in a table, you can
pass that table as a second parameter:

// retrieve if there is a $table['name']
$name = _request('name', $table);

Example

Retrieve only from the values that were passed in the URL:

$name = _request('name', $_GET);

http://www.php.net/intval

Pipelines
Some parts of the code define “pipelines”. They provide one of the best ways
to modify or adapt the behaviour of SPIP.

Definition
A pipeline (p.323) is used to pass code through one or more intermediary
functions to complete or modify that code.

Declaration within a plugin
Any plugin can use an existing pipeline. To do so, it declares it in the
plugin.xml file as illustrated here below:

<pipeline>
<nom>header_prive</nom>
<inclure>cfg_pipeline.php</inclure>
</pipeline>

* Nom: specifies the name of the pipeline to be used,

» Inclure: specifies the name of the file that contains the function to be
executed when calling the pipeline
(prefixPlugin_ripelineName()).

Declaration without using a plugin
One usage of a pipeline outside that of plugins does remain possible. In this
case, it must be declared directly in the config/mes_options.php file:

$GLOBALS['spip_pipeline']['name_of_the_pipeline'] .=
" |name_of_the_function";

// Example of adding into the "insert_head" pipeline:
$GLOBALS['spip_pipeline']['insert_head'] .=

" |name_of_the_function";

function name_of_the_function($flux) {
return $flux .= "This text will be appended";
3

The function called must be known at the time that the pipeline is called,
with the simplest solution being to declare it as above with a
name_of_the_function function defined in the options file.

174

18

List of current pipelines
The default pipelines defined in SPIP are listed in the file ecrire/
inc_version.php. However, plugins are able to create new ones.

There are several types of pipelines: some of them deal with typographical
modifications, others deal with database modifications, or pages that are only
displayed in the private area, etc.

Declaring a new pipeline
The pipeline must first be declared in a global options file like this:
$GLOBALS['spip_pipeline']['newPipelineName'] = '';

The name of this pipeline must be a key of the associative array
$GLOBALS['spip_pipeline'].

Then, the pipelines must be called from somewhere, either in a template or a
PHP file:
e Templates: #PIPELINE{newPipelineName, initial content}
e PHP: $data = pipeline("newPipelineName", "initial
content");.

The #PIPELINE tag and the pipeline() function both use the same
arguments. The first argument is the name (in our example, it's
"newPipelineName"). The other one is the data that is sent to the hook.

The pipeline is a channel by which information is transmitted sequentially.
Each plugin that has declared this pipeline is party to this channel, and so can
complete or modify the input data, and transmit the result to the next part. The
result of the pipeline is the result of the last process that has been applied.

Contextual pipelines

It is often necessary to pass contextual arguments to the pipeline on top of the
data returned by the pipeline. This is possible by using a table with at least 2
keys, named "args" and "data".

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc_version.php#L238
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc_version.php#L238

When the last function of the pipeline chain is called, only the value of data is

returned.

$data = pipeline('newPipeline',array(
'args'=>array(
'id_article'=>$id_article
Do
'data'=>"1initial content"

E
[(#PIPELINE{newPipeline,
[(#ARRAY{

data,initial content

HIY]

args, [(#ARRAY{id_article,#ID_ARTICLE})],

19

http://www.php.net/array

120

Pipeline details

This section describes the use of some of SPIP’s pipelines.

Name

rechercher_liste_des_champs
(p.122)

accueil_encours (p.123)
accueil_gadget (p.123)
accueil_informations (p.124)
affichage_entetes_final
(p.125)

affichage_final (p.126)
afficher_config_objet (p.127)
afficher_contenu_objet
(p.128)

afficher_fiche_objet (p.129)

affiche_droite (p.130)

affiche_enfants (p.131)

affiche_gauche (p.131)

affiche_hierarchie (p.132)

ajouter_boutons (p.134)

ajouter_onglets (p.136)
alertes_auteur (p.138)

Description

Defines the fields and weightings to apply
for searches in a table

Adds content to the centre of the home
page

Adds links above the content of the home
page

Provides statistics about editorial objects on
the home page

Modifies the returned page headers

Performs processing just before publishing
public web pages

Adds elements to the configuration panels
for editorial objects

Modifies or adds to the view form of an
object in the private interface

Adds content to the view screens of editorial
objects

Adds content to the "right-hand side"
column in the private area

Modifies or adds to the contents of the lists
showing the children of an object in the
private area

Adds contents to the "left-hand side" column
in the private area

Modifies the HTML code of the breadcrumb
path in the private area

Adds buttons to the menu bar in the private
area

Adds tabs to the pages of the private area

Adds warnings to the author logged into the
private area

Name
autoriser (p.139)
body_prive (p.141)

boite_infos (p.141)
compter_contributions_auteur

(p.143)

declarer_tables_auxiliaires
(p.145)

declarer_tables_interfaces
(p.146)

declarer_url_objets (p.155)
definir_session (p.157)

delete_statistiques (p.159)

delete_tables (p.159)
editer_contenu_objet (p.159)

formulaire_charger (p.160)

formulaire_traiter (p.161)

formulaire_verifier (p.162)

header_prive (p.163)

insert_head_css (p.166)

lister_tables noerase (p.167)

lister_tables_noexport (p.167)

extending SPIP

Description
Loads the authorisation functions

Inserts content after the <body> section in
the private area

Display data about objects in the info boxes
within the private zone

Counts an author’s contributions
Declares "auxiliary" SQL tables

Declares additional data in SQL tables
(alias, processes, joins, ...)

Enables standard URLs for a new editorial
object

Defines the parameters that identify the
visitor specific caches

Triggered when the statistics tables are
purged

Triggered during database purges
Modifies the HTML content of forms

Modifies the table of values returned by the
charger function for a CVT form

Modifies the table returned by the traiter

function for a CVT form or perform some
added processes

Modifies the array returned by the
verifier function for a CVT form

Adds content to the <head> section of
private area pages
Adds CSS code for the public site

Lists the tables that are not to be purged
before a backup restore

Lists the SQL tables that are not to be
backed up

121

122

Name

lister_tables_noimport (p.168)
optimiser_base_disparus
(p-168)

post_typo (p.170)
pre_insertion (p.172)
pre_liens (p.173)

pre_typo (p.174)
recuperer_fond (p.176)
rubrique_encours (p.177)
taches_generales_cron

(p-179)

trig_supprimer_objets_lies
(p.180)

... and the rest of them
(p.181)

Description

Lists the SQL tables that are not to be
imported

Cleans out orphan records from the
database

Modifies text after the typographical
processes have been applied

Adds default content when a database
insert is executed

Processes typographical shortcuts relating
to links

Modifies text before the typographical
processes are applied

Modifies the results of a template
compilation

Adds content to the "Submitted for
evaluation" area for sections

Sets up periodic tasks

Deletes the links for an object when an
object is deleted

Those that are yet to be documented

rechercher_liste_des_champs
This pipeline specifies the fields to be considered when a search is performed

on a given table.

It manipulates a 2-dimensional associative array composed like this:
« the first key is the name of a SPIP object (article, rubrique...).
» the other key is the name of a field (titre, texte...) to take into account for

the search.

« the value is the weighting coefficient: the higher this value is, the more
points are attributed to a result found in the corresponding field.

Example

function
prefixPlugin_rechercher_liste_des_champs($tables){
// add a field 'town' to the articles
$tables['article']['town'] = 3;
// hide a field from the search process
unset($tables['rubrique']['descriptif']);
return $tables;

accueil_encours
This pipeline is used to add content to the centre of the home page in the
private zone, e.g. to display new articles proposed for publication.

$res = pipeline('accueil_encours', $res);

This pipeline accepts a text string as argument and returns the supplemented
text as output.

Example

The "breves" plugin, if it existed, might use this pipeline to add the list of
recently proposed news items:

function breves_accueil_encours($texte){

$texte .= afficher_objets('breve',
afficher_plus(generer_url_ecrire('breves'))
_T("info_breves_valider'), array("FROM" => 'spip_breves',
'"WHERE' => "statut='prepa' OR statut='prop'", 'ORDER BY'
=> "date_heure DESC"), true);

return $texte;

123

http://www.php.net/unset
http://www.php.net/array

accueil_gadget

This pipeline is used to add links above the content of the home page in the
private zone, within the frame that lists the various actions available (create a
section, an article, a news item, etc.).

$gadget = pipeline('accueil_gadgets', $gadget);

This pipeline accepts a text argument and returns the supplemented text as
output.

Example

The "breves" plugin, if it existed, would use this pipeline to add a link at
the top to allow the user to create or view the list of news item depending
on the status of the author currently connected:

function breves_accueil_gadgets($texte){
if ($GLOBALS['meta']['activer_breves'] != 'non') {

// create, otherwise view

if ($GLOBALS['visiteur_session']['statut'] ==
"Ominirezo") {

$ajout =

icone_horizontale(_T('icone_nouvelle_breve'),
generer_url_ecrire("breves_edit", "new=oui"),
"breve-24.png","new", false);

} else {
$ajout = icone_horizontale
(_T('icone_breves'), generer_url_ecrire("breves",""),
"breve-24.png", "", false);
}

$texte = str_replace("</tr></table>",
"<td>$ajout</td></tr></table>", $texte);
}

return $texte;

accueil_informations
This pipeline is used to add statistical data about the editorial objects into the
side navigation panel on the home page.

124

http://www.php.net/str_replace

$res = pipeline('accueil_informations', $res);

It accepts text as a parameter that it may complete and return as output.

Example

The "breves" plugin, if it existed, might use this pipeline to add the number
of news items awaiting validation for publication:

function breves_accueil_informations($texte){

include_spip('base/abstract_sql');

$g = sql_select("COUNT(*) AS cnt, statut",
'spip_breves', '', 'statut', '','', "COUNT(*)<>0");

// processes operating on the text depending on the
resulting output

// ...

return $texte;

affichage_entetes_final

This pipeline, called for every SPIP public page when it is displayed, accepts
a table parameter containing the list of page headers. It then allows the
modification of or addition to those headers. It is called just before the
affichage_final (p.126) pipeline, which receives the text string output by this

function.

This pipeline is called in ecrire/public.php, taking and returning a table

parameter containing the various page headers:

$page['entetes'] = pipeline('affichage_entetes_final',
$page['entetes']);

125

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public.php

126

Example

One usage of this pipeline is to enable site statistics generation, since
by knowing the headers sent out (and therefore the page type) and
certain other environmental parameters, we can make entries into a visitor
statistics table (the action code has been simplified for reference purposes
here and comes from the "Statistiques" plugin):

// for html pages generated, count the visits.
function stats_affichage_entetes_final($entetes){
if (($GLOBALS['meta']["activer_statistiques"] !=

"non")
AND preg_match(',A\s*text/html,"', $entetes['Content-
Type'l)) {
$stats = charger_fonction('stats', 'public');
$stats(;
}

return $entetes;

affichage_final

This pipeline is called at the time that the contents of a page are being sent
back to the visitor's browser. It accepts a text argument (most commonly the
HTML page) that it may edit or add to. The modifications are not stored in the
cache by SPIP.

echo pipeline('affichage_final', $page['texte']);

This is a pipeline frequently used by plugins that enable a wide range of
actions. Nonetheless, since the results of the pipeline are not stored in the
cache, and this pipeline is called for every page displayed, it would be wise to
limit its usage to functions that are not too resource intensive.

Example

The "XSPF" plugin, which is used to generate multimedia galleries, adds
a JavaScript component only to pages that require it, as shown below:

http://www.php.net/preg_match

function xspf_affichage_final($page) {

// check to see if the page has any "player" class
components

if (strpos($page, 'class="xspf_player"')===FALSE)

return $page;

// If so, add the swfobject js

$jsFile = find_in_path('1ib/swfobject/swfobject.js"');

$head = "<script src="'$jsFile' type='text/
javascript'></script>";

$pos_head = strpos($page, '</head>');

return substr_replace($page, $head, $pos_head, 0);

The "target" plugin opens external links in a new window, (oh, yes, even
if that’s not a terribly popular idea these days!), and so it systematically
changes "outward" links so that they have an external target attribute:

function target_affichage_final($texte) {

$texte = str_replace('spip_out"', 'spip_out"
target="_blank"', $texte);

$texte = str_replace('rel="directory"',

'rel="directory" class="spip_out" target="_blank"",

$texte);
$texte = str_replace('spip_glossaire"',
'spip_glossaire" target="_blank"', $texte);

return $texte;

}

afficher_config_objet
This pipeline is used to add elements into the configuration panels for SPIP
objects.

It is called as demonstrated in ecrire/exec/articles.php:

$masque = pipeline('afficher_config_objet',
array('args' => array('type'=>'type objet',
'id'=>$id_objet),
'data'=>$masque));

127

http://www.php.net/strpos
http://www.php.net/strpos
http://www.php.net/substr_replace
http://www.php.net/str_replace
http://www.php.net/str_replace
http://www.php.net/str_replace
http://trac.rezo.net/trac/spip/browser/spip/ecrire/exec/articles.php
http://www.php.net/array
http://www.php.net/array

As of writing, it only applies to articles and adds its content into the "Forum and
Petitions" panel.

Example

The "Forum" plugin adds moderation control settings (no forum,
registration required, post-moderation...) for each article, using the
following code:

function forum_afficher_config_objet($fTux){
if (($type = $flux['args']['type']) == 'article'){
$id = $flux['args']['id"'];
if (autoriser('modererforum', $type, $id)) {
$table = table_objet($type);
$id_table_objet = id_table_objet($type);

$flux['data'] .= recuperer_fond("prive/
configurer/moderation"”, array($id_table_objet => $id));
}
}

return $flux;

afficher_contenu_objet

This pipeline is used to modify or complete the contents of the pages in the
private interface that are used to display objects, such as the page for viewing
an article.

It is called during the life of any object in the private zone, by passing the type
and identifier of the object in the args parameter, and the HTML code for the
object view in the data parameter:

$fond = pipeline('afficher_contenu_objet',
array (
'args'=>array(
"type'=>$type,
'id_objet'=>%$id_article,
'contexte'=>$contexte),
'data'=> ($fond)));

128

http://www.php.net/array
http://www.php.net/array

Example

The "Métadonnées Photos" (photo metadata) plugin adds a photo usage
graphic and the EXIF data underneath the description of the JPG images
which are attached to the current object, using the code shown below:

function photo_infos_pave($args) {
if ($args["args"]["type"] == "case_document") {
$args["data"] .= recuperer_fond("pave_exif",
array('id_document' => $args["args"]["id"]));
3

return $args;

afficher_fiche_objet
This pipeline is used to add content into the view pages for editorial objects in
the private zone. It is called as demonstrated below:

pipeline('afficher_fiche_objet', array(
‘args' => array(
'type' => 'type_objet',
'id' => $id_objet),
'data' => "<div class='fiche_objet'>" . "...contenus..."
L </dive")

As of writing, it is used for adding elements to the "articles" and "navigation"
(sections) pages.

Example

The "Forum" plugin uses this pipeline to add buttons enabling discussion
of an article. It does this by adding a forum reference to the footer of the
article page:

function forum_afficher_fiche_objet($fTux){
if (($type = $flux['args']['type'])=="article'){
$id = $flux['args']['id'];
$table = table_objet($type);

129

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

130

$id_table_objet = id_table_objet($type);
$discuter = charger_fonction('discuter', "inc');
$fTux['data'] .= $discuter($id, S$table,
$id_table_objet, 'prive', _request('debut'));
}
7/ [Loood

return $flux;

affiche_droite

This pipeline is used to add content into the "right-hand" column (which is not
necessarily actually on the right hand side, depending on the user’s preference
settings and language) on the "exec" pages in the private zone. This column
normally contains "horizontal" navigation links related to the currently displayed
contents, such as in the "In the same section" panel which lists recently
published articles in the same section as the current article.

echo pipeline('affiche_droite', array(
'args'=>array/(
'exec'=>"naviguer',
"id_rubrique'=>$%$id_rubrique),
'data'=>""));

This pipeline accepts the "exec" page name displayed as a parameter, as well
as an optional identifier for the object currently being read, e.g. "id_rubrique".

Example

The "odt2spip" plugin, used to create SPIP articles based on OpenOffice
text documents (with the . odt file extension), employs this pipeline to add
a form to the section view screen in order to enter an odt filename:

function odt2spip_affiche_droite($flux){
$id_rubrique = $flux['args']['id_rubrique'];
if ($flux['args']['exec']=="naviguer' AND
$id_rubrique > 0) {

http://www.php.net/array

$icone =
icone_horizontale(_T("odtspip:importer_fichier"), "#",
""" _DIR_PLUGIN_ODT2SPIP . "images/odt-24.png", false,
"onclick="$(\"#boite_odt2spip\").slideToggle(\"fast\");
return false;'");

$out = recuperer_fond('formulaires/odt2spip’,
array('id_rubrique'=>$id_rubrique, 'icone'=>$icone));

$flux['data'] .= $out;

}

return $flux;

affiche_enfants

This pipeline is used to add to or modify the contents of the lists showing the
children of an object. The args parameter accepts the name of the current
page and the object identifier, and its data parameter accepts the HTML code
showing the object’s children. This pipeline is actually only called from a single
location: on the section navigation page.

$onglet_enfants = pipeline('affiche_enfants', array(
'args'=>array/(
'exec'=>"naviguer',
'id_rubrique'=>$%$id_rubrique),
'data'=>%onglet_enfants));

affiche_gauche

This pipeline is used to add content to the "left-hand" column in the private zone
pages. This column generally contains links or forms relating to the currently
displayed content, like the form for adding a logo for the current section/article.

echo pipeline('affiche_gauche', array(
'args'=>array(
'exec'=>"articles"',
'id_article'=>$id_article),
'data'=>"'"'));

131

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

132

This pipeline accepts the name of the currently displayed "exec" page as
an argument, as well as the possible identifier for the object currently being
displayed, such as the "id_article".

Example

The "spip bisous" plugin, which is used to send kisses(bisous) amongst
site authors, employs this pipeline to display the list of kisses received and
sent for the author pages:

function bisous_affiche_gauche($fTux){
include_spip('inc/presentation’');
if ($flux['args']['exec'] == 'auteur_infos'){
$flux['data'] .=
debut_cadre_relief('',true,"'",
_T('bisous:bisous_donnes'))
recuperer_fond('prive/bisous_donnes',
array('id_auteur'=>$flux['args']['id_auteur'])) .
fin_cadre_relief(true)
debut_cadre_relief('', true,"'",
_T('bisous:bisous_recus'))
recuperer_fond('prive/bisous_recus"',
array('id_auteur'=>$flux['args']['id_auteur'])) .
fin_cadre_relief(true);
}

return $flux;

affiche_hierarchie

The "affiche_hierarchie" pipeline is used to modify or add to the HTML code
for the breadcrumb path in the private zone. It accepts a certain number of
data items in the args: the subject of its current identifier, if there is one, and
possibly the identifier of the sector.

$out = pipeline('affiche_hierarchie', array(
'args'=>array(
'id_parent'=>$id_parent,
'message'=>$message,
'id_objet'=>%$id_objet,
'objet'=>$type,

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

'id_secteur'=>%$id_secteur,
'restreint'=>$restreint),
'data'=>$out));

Example

The "polyhiérarchie" plugin, which enables a section or article to have
multiple parents, uses this pipeline to list the various parents for the
section or article currently displayed:

function polyhier_affiche_hierarchie($fTux){
$objet = $flux['args']['objet'];
if (in_array($objet,array('article’', 'rubrique'))){
$id_objet = $flux['args']['id_objet'];
include_spip('inc/polyhier');
$parents =
polyhier_get_parents($id_objet, $objet, $serveur="");
$out = array(Q);
foreach($parents as $p)
$out[] = "[->rubrique$pl";
if (count($out)){
$out = implode(', ',S$out);
$out = _T('polyhier:label_autres_parents')."

".$out;
$out = PtoBR(propre($out));
$flux['data'] .= "<div
id="chemins_transverses'>$out</div>";
}
}

return $flux;

affiche_milieu
This pipeline is used to add some content to SPIP’s exec/ pages. The new
content is inserted after the content of the middle part of the page.

It is called as follows:

echo pipeline('affiche_milieu',array(

133

http://www.php.net/in_array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/count
http://www.php.net/implode
http://www.php.net/array

134

'args'=>array('exec'=>"name_of_the_exec', 'id_objet'=>%$object_id),
'data'=>""));

Examples

The plugin "Sélection d’articles” uses it to add a form to the sections page to
offer a selection of articles:

function pb_selection_affiche_milieu($flux) {
$exec = $flux["args"]["exec"];

if ($exec == "naviguer") {
$id_rubrique = $flux["args"]["id_rubrique"];
$contexte = array('id_rubrique'=>$id_rubrique);

$ret = "<div id='pave_selection'>";

$ret .= recuperer_fond("selection_interface",
$contexte) ;

$ret .= "</div>";

$flux["data"] .= $ret;
}

return $flux;

The plugin "statistiques" adds a configuration form inside SPIP’s configuration
pages

function stats_affiche_milieu($flux){
// displays the configuration ([de]activate the
statistics).
if ($flux['args']['exec'] == 'config_fonctions') {
$compteur = charger_fonction('compteur',
'configuration');
$flux['data'] .= $compteur();
}

return $flux;

http://www.php.net/array

ajouter_boutons

This pipeline is used to add buttons to the private zone navigation menu. It is
not really so useful since the creation of the <bouton> tag in the pTugin.xm]
file (see Defining buttons (p.309)).

$boutons_admin = pipeline('ajouter_boutons', $boutons_admin);

The "ajouter_boutons" pipeline accepts a parameter table of "button identifer /
button description" couples (with a PHP class of Bouton(Button)). A button can
declare a sub-menu in the "submenu" variable of the Bouton(Button) class. You
must create an instance of the Bouton class to define this:

function plugin_ajouter_boutons($boutons_admin) {
$boutons_admin['identifier'] =

new Bouton('image/du_bouton.png', 'Button title', 'url');
$boutons_admin['identifier']->sousmenu['other_identifier'] =

new Bouton('image/du_bouton.png', 'Button title', 'url');
return $boutons_admin;

}

The third ur1 parameter of the Bouton class is optional. By default, it will
be an "exec" page with the same name as the identifier provided (ecrire/
?exec=identifier).

Example

The "Thelia" plugin, which makes it possible to interface SPIP with the
Thélia software package, uses this pipeline to add a link to the Thélia
catalogue to the "Edition" menu (with the "naviguer" identifier):

function spip_thelia_ajouter_boutons($boutons_admin) {
// if you are admin
if ($GLOBALS['visiteur_session']['statut'] ==
"Ominirezo") {
$boutons_admin['naviguer']-
>sousmenu['spip_thelia_catalogue'] =
new Bouton(_DIR_PLUGIN_SPIP_THELIA . 'img_pack/
Togo_thelia_petit.png', 'Catalogue Thélia');
}

135

return $boutons_admin;

Migration to the new system

To rewrite this example to the new system, two things would need to be
separated: the button declaration, and the authorisation to view it or not
(in this case, authorisation is only for administrators). The declaration is
written in the plugin.xm] file:

<bouton id="spip_thelia_catalogue" parent="naviguer">
<icone>smg_pack/Togo_thelia_petit.png</icone>
<titre>title language string</titre>

</bouton>

The authorisation component is built with a special authorisation function
(use the autoriser (p.139) pipeline to define this):

function
autoriser_spip_thelia_catalogue_bouton_dist($faire,
$type, $id, $qui, $opt) {

return ($qui['statut'] == 'Ominirezo');

}

ajouter_onglets

This pipeline is used to add tabs to the exec pages in the private zone. It is not
so nearly useful since the creation of the <onglet> tag in the plugin.xm]l
file (see Defining page tabs (p.312)).

return pipeline('ajouter_onglets"',
array('data'=>%onglets, 'args'=>%$script));

The "ajouter_onglets" pipeline accepts a table of couples of "tab identifier / tab
description" (PHP class of Bouton), but also an identifier for the tab toolbar (in
args).

// add a tab to SPIP's configuration page
function plugin_ajouter_onglets($fTux){

136

http://www.php.net/array

if ($flux['args']=="identifiant')
$fTux['data']['identifiant_bouton']= new Bouton('"mon/
image.png", "titre de 1'onglet"), 'url');
return $flux;

}

The third ur1 parameter for the Bouton class is optional. By default it will
be an "exec" page with the same name as the provided identifier (ecrire/
?exec=identifier).

In the exec pages, a toolbar is called with two arguments: the identifier of the
desired toolbar and the identifier of the active tab:

echo barre_onglets("tab toolbar identifier", "active tab

identifier");

echo barre_onglets("configuration", "contents");
Example

The "Agenda" plugin modifies the default tabs for SPIP’s calendar by
using this pipeline:

function agenda_ajouter_onglets($fTux) {
if($flux['args']=="calendrier'){
$flux['data']['agenda']= new Bouton(
_DIR_PLUGIN_AGENDA . '/img_pack/agenda-24.png',
_T('agenda:agenda'),
generer_url_ecrire("calendrier"”,"type=semaine™));
$flux['data']['calendrier'] = new Bouton(
'cal-rv.png',
_T('agenda:activite_editoriale'),
generer_url_ecrire("calendrier",
"mode=editorial&type=semaine"));
3
return $flux;

}

137

138

Migration to the new system

To rewrite this example in the new system, 2 things need to be separated:
the declaration of the button, and the authorisation to see it or not. The
declaration is made in the pTugin.xm] file:

<onglet id="agenda" parent="calendrier">
<icone>img_pack/agenda-24.png</icone>
<titre>agenda:agenda</titre>
<url>calendrier</url>
<args>type=semaine</args>

</onglet>

<onglet id="calendrier" parent="calendrier">
<icone>cal-rv.png</icone>
<titre>agenda:activite_editoriale</titre>
<url>calendrier</url>
<args>mode=editorial&type=semaine</args>

</onglet>

The authorisation is relocated into a special function (use the autoriser
(p-139) pipeline to define it):

function autoriser_calendrier_onglet_dist($faire, $type,
$id, qui, Sopt) {
return true;

}
function autoriser_agenda_onglet_dist($faire, $type, $id,
qui, Sopt) {

return true;

}

alertes_auteur
SPIP can send warning messages for various events that may be more or less
considered as being urgent:

» A database crash

* Aplugin crash

* A plugin activation error

» A notification that there is a message in the mailbox

This pipeline, called in ecrire/inc/commencer_page.php by the
alertes_auteur() function, is used to populate the table containing such
warnings.

$alertes = pipeline('alertes_auteur', array(
‘args' => array(
'id_auteur' => $id_auteur,
'exec' => _request('exec'),
)

'data' => $alertes

b

It receives an array as a parameter.
» data: contains an array of the various warnings,
* args contains an array with:
o id_auteur being the currently logged-in author,
o exec is the name of the displayed page.

Example

Suppose that there is a plugin called "Watch out for llamas", which tells
people that they are at risk of encountering a fearsome llama, then we
could provide this as follows:

function Tlamas_alertes_auteur($fTux) {
$alertes = $flux['data'];

// If there is a 11lama in front of this author
if (tester_Tlama($flux['args']['id_auteur'])) {
// We add a warning
falertes[] = "watch out! There's a
Tlama!";

3

// We return the table of warnings
return $alertes;

A most fortuitous and beneficent plugin indeed!

139

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/commencer_page.php
http://www.php.net/array
http://www.php.net/array

140

autoriser

The "autoriser" pipeline is a special one. It is simply used to load the
authorisation functions the first time that the autoriser () function is called.
This pipeline neither accepts arguments nor returns output.

pipeline('autoriser');

With this pipeline, a plugin can declare its own special authorisations,
regrouped in a file named "PluginPrefix_autorisations.php" and declare them in
the pTugin.xm1 file as in this example:

<pipeline>
<nom>autoriser</nom>
<inclure>prefixePlugin_autorisations.php</inclure>
</pipeline>

In addition to authorisation functions, the file must contain the function called
by all of the pipelines ("PluginPrefix_PipelineName()") but it has nothing to
execute, e.g.:

function prefixePlugin_autoriser(){}

Example

The "forum" plugin declares several new authorisations. Its plugin.xml
file contains:

<pipeline>
<nom>autoriser</nom>
<inclure>forum_autoriser.php</inclure>
</pipeline>

And the file which is called "forum_autoriser.php" contains:

// declare the pipeline function
function forum_autoriser(){}
function
autoriser_forum_interne_suivi_bouton_dist($faire, $type,
$id, $qui, $opt) {

return true;

3
function autoriser_forum_reactions_bouton_dist(($faire,
$type, $id, $qui, $opt) {

return autoriser('publierdans', 'rubrique',
_request('id_rubrique'));
}
// Moderate the forum?
// = modify the corresponding object (if there is a forum
for this object)
// = default rights else (full admin for full moderation
rights)
function autoriser_modererforum_dist($faire, $type, $id,
$qui, $opt) {

return autoriser('modifier', $type, $id, $qui, $opt);
}
// Modify a forum ? never !
function autoriser_forum_modifier_dist($faire, $type,
$id, $qui, $opt) {

return false;

}

base_admin_repair
This pipeline is placed at the end of a repair process (for example to repair
documents).

It has been created by the changeset [14262]

body_prive

This pipeline is used to modify the HTML body tag in the private zone, or to
add content just after this tag. It is called by the commencer_page () function
that is executed during the display of private zone pages.

$res = pipeline('body_prive',

"<body class='$rubrique $sous_rubrique
_request('exec') e

. ($GLOBALS['spip_lang_rt1'] ? " dir="rt1'" : "") . '>");

11

http://trac.rezo.net/trac/spip/changeset/14292/spip/ecrire/base/admin_repair.php

142

boite_infos

This pipeline modifies the information block of the objects in SPIP’s private
zone. As an example, this is the block that contains the number of an article
and the links used to change its status.

It accepts an associative array defined like this:
» data: what will be displayed on the page,
* args: another associative array of 3 keys:
o type: the object type (article, rubrique...)
> 1d: the objectid (8, 12...)
o row: array containing all the SQL fields of the object and their values.

Example

The plugin "Prévisualisation pour les articles en cours de rédaction"
(previsu_redac) adds the button "Preview" when an article is still in the
editing process (normally this link appears only when an article has been
submitted for evaluation):

function previsu_redac_boite_infos(&$fTux){
if ($flux['args']['type']=="article'
AND $id_article=intval($flux['args']["id"'])
AND $statut = $flux['args']['row']['statut']

AND $statut == 'prepa'
AND autoriser('previsualiser')){
$message = _T('previsualiser');

$h = generer_url_action('redirect',
"type=article&id=$id_article&var_mode=preview");
$previsu =
icone_horizontale($message, $h, "racine-24.gif",
"rien.gif",false);
if ($p = strpos($flux['data'], "'")){
while($q =
strpos($flux['data'], '",$p+5)) $p=9%q;
$flux['data'] = substr($flux['data'],0,$p+5)
. $previsu . substr($flux['data'], $p+5);
}
else
$flux['data'].= $previsu;
}

return $flux;

http://www.php.net/intval
http://www.php.net/strpos
http://www.php.net/strpos
http://www.php.net/substr
http://www.php.net/substr

calculer_rubriques
With this pipeline, plugins can change the status of a section (e.g. each section
is published at its creation).

This pipeline can do everything but in order to modify the status/dates
fields, it must modify the statut_tmp/date_tmp fields like this:

sql updateq('spip rubriques', array('date tmp' =>
'0000-00-00 00:00:00", 'statut tmp' => 'prive'));

Because SQL queries aren’t transactional in SPIP, these temporary fields are
necessary in order to be sure that the database won’t be broken during the
calculation process.

This pipeline is called here: http://trac.rezo.net/trac/spip/brow...

compter_contributions_auteur
This pipeline is used to insert content onto the author list page showing the
volume of each author’s contributions.

It is called as shown below from ecrire/inc/formater_auteur.php:

$contributions = pipeline('compter_contributions_auteur',
array (

'args' => array('id_auteur' => $id_auteur, 'row' =>
$row) ,

'data' => $contributions));

Example
The "Forum" plugin adds the number of messages written by an author:

function forum_compter_contributions_auteur ($fTux) {

143

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/rubriques.php#calculer_rubriques_publiees
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/formater_auteur.php
http://www.php.net/array
http://www.php.net/array

febe}

$id_auteur = intval($flux['args']['id_auteur']);
if ($cpt = sql_countsel("spip_forum AS F",
"F.id_auteur=".intval ($flux['args']['id_auteur']))){
// manque "1 message de forum"
$contributions = ($cpt>1) ? $cpt . " .

_T('public:messages_forum') : '1 '
_T('public:message');
$flux['data'] .= ($flux['data']?", ":"") .
$contributions;
}

return $flux;

configurer_liste_metas
This pipeline is used to supplement (or modify) SPIP’s default configuration
parameter values. It accepts a parameter consisting of a table of "name / value"
pairs and returns the same as output.

This pipeline is called in ecrire/inc/config.php:

return pipeline('configurer_liste_metas', array(
'nom_site' => _T('info_mon_site_spip'),
'adresse_site' => preg_replace(",/$,", "",

url_de_base()),
'descriptif_site' => "'
/).

DDE

The config() function is used to supplement the parameters still missing
from SPIP but which have a default value defined by the pipeline. It is
specifically called from SPIP’s native configuration forms.

$config = charger_fonction('config', 'inc');
$config();

http://www.php.net/intval
http://www.php.net/intval
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/config.php
http://www.php.net/array
http://www.php.net/preg_replace

Example

The "Compresseur" extension uses this pipeline to define the default
options for the page compression system.

function compresseur_configurer_liste_metas($metas){
$metas['auto_compress_js']="non';
$metas['auto_compress_closure']="non';
$metas['auto_compress_css']="non';
return $metas;

declarer_tables_auxiliaires
This pipeline declares the "auxiliary" tables, which are mainly used to create
joins between principal tables.

It accepts the same arguments as the pipeline declarer_tables_principales
(p.153).

Example

The plugin "SPIP Bisous" enables an author to send a poke to another
author. It declares a table spip_bisous linking 2 members with the
poke’s date using code as shown below. Note that the primary key is
composed of 2 separate fields.

function
bisous_declarer_tables_auxiliaires($auxiliary_tables){
$spip_bisous = array(
'id_donneur' => 'bigint(21) DEFAULT "O0" NOT
NULL',
'id_receveur' => 'bigint(21) DEFAULT "0" NOT
NULL",
'date' => 'datetime DEFAULT "0000-00-00 00:00:00"
NOT NULL'
b

$spip_bisous_key = array(
'PRIMARY KEY' => 'id_donneur, id_receveur'

145

http://www.php.net/array
http://www.php.net/array

DE

$auxiliary_tables['spip_bisous'] = array(
'field' => &$spip_bisous,
'key' => &$spip_bisous_key

D8

return $auxiliary_tables;

declarer_tables_interfaces
This pipeline is used to declare information relating to SQL tables or for
certain fields in those tables. It makes it possible to supplement the information
provided by ecrire/public/interfaces.php

The function accepts a parameter which is the array of declared elements,
often called $interface, which must also be returned as output from the
function. This array consists of the various elements, each of which are also
arrays:

.

table_des_tabTles declares the alias names of SQL tables,
exceptions_des_tables assigns aliases to SQL columns for a given
table,

table_titre specifies the SQL column of an object used to define the
title for certain types of URL naming conventions,

table_date specifies an SQL data type column for a given SQL table
which can be used for certain specific selection criteria (age, age_relatif,

"

tables_jointures defines the possible joins between SQL tables,
exceptions_des_jointures creates aliases for SQL columns

resulting from a join,
table_des_traitements specifies filters to be systematically applied

on SPIP tags.

table_des_tables
Declares alias names for SQL tables, relating to the declaration provided in
either the principal or join tables.

146

http://www.php.net/array
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/interfaces.php#L166

In general, any plugin offering a new editorial object also declares an identical
alias as the object name. This makes it possible to write loops like
<BOUCLEX(NAME)>, in exactly the same way as <BOUCLEX (spip_name)>
(which simply specifies the name of the SQL table).

// 'name_declare' = 'spip_rubriques', but without the 'spip_'
prefix

$interface['table_des_tables']['alias'] = 'name_declare';

// examples

$interface['table_des_tables']['articles'] = 'articles'; //
ARTICLE loops on spip_articles
$interface['table_des_tables']['billets'] = 'articles'; //
BILLET Toops on spip_articles

exceptions_des_tables
Just as with declaration of aliases for SQL tables, it is also possible to declare
aliases for SQL columns. These aliases can also force a join to another table.

// the tag #COLUMN_ALIAS or criteria {column_alias} applied
to the correct loop
$interface['exceptions_des_tables']['alias']['column_alias"']

= 'column';
$interface['exceptions_des_tables']['alias']['column_alias']
= array('table', 'column');

// examples
$interface['exceptions_des_tables']['breves']['date'] =
'date_heure';
$interface['exceptions_des_tables']['billets']["'id_billet'] =
'id_article’;

= array('types_documents'

, 'titre');

// allows for the use of criteria Tike racine (root),
meme_parent (same parent), id_parent
$interface['exceptions_des_tables']['evenements']['id_parent']
= 'id_evenement_source';

= array('spip_articles', 'id_rubrique');

$interface['exceptions_des_tables']['documents']['type_document']

$interface['exceptions_des_tables']['evenements']['id_rubrique']

147

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

148

table_titre

Specifies which field will be used to generate the titles for certain URL naming
conventions (propre, arborescent...). The character string passed is an SQL
selection declaration (SELECT), which must return 2 columns as output (or the
SQL column alias(s)) : "title" and "lang". When the object has no corresponding
"lang" field, then it must return ' ' AS Tang instead.

$interface['table_titre']['alias']= "title_column AS titre,
Tang_column AS lang";

// examples

$interface['table_titre']['mots']= "titre, '' AS lang";
$interface['table_titre']['breves']= 'titre , lang';

Whenever an object has declared its title, the URL generator can then create
meaningful URL’s automatically (depending on the URL naming convention
chosen for the web site).

table_date
This information is used to declare certain SQL columns as date type fields.
The SPIP compiler can then apply certain kinds of criteria to these fields, such

as "age", "age_relatif", "jour_relatif"... Only one single date type field can be
declared for any given table.

$interface['table_date']['alias'] = 'column_name';

// examples
$interface['table_date']['articles']="date"';
$interface['table_date']['evenements'] = 'start_date';

tables_jointures
These declarations are used by the compiler to explicitly determine the possible
joins whenever a loop on a table requests an unknown field (tag or criteria).

The compiler knows implicitly how to make certain joins (without declaring
them) by looking for the column requested in the other SQL tables that it knows
about. The compiler does not search through all tables, but only in those that
have specific columns in common:
* same name as the primary key,
+ same name as a column declared as a potential join in its join
description in the principal or join tables.

In many cases, it is useful and preferable to explicitly declare to the compiler
which joins that it can try to make when it is presented with an unknown field
in a table. That is the explicit purpose of these kinds of declaration. The order
of the declarations is sometimes important, since it will effect which join the
compiler will find when it looks for the field in another table. Even if the field
sought after would be found declared for the table anyway.

$interface['tables_jointures']['spip_nom'][] = 'other_table';
$interface['tables_jointures']['spip_nom']['column'] =
'other_table';

// examples

// {id_mot} for ARTICLES
$interface['tables_jointures']['spip_articles'][]=
'mots_articles';
$interface['tables_jointures']['spip_articles'][]= 'mots';

// event joins (for the plugin agenda) on keywords or
articles
$interface['tables_jointures']['spip_evenements'][]= 'mots';
// inserted before the articles join
$interface['tables_jointures']['spip_evenements'][]
'articles';
$interface['tables_jointures']['spip_evenements'][]
'mots_evenements';

// articles joins to events (evenements)
$interface['tables_jointures']['spip_articles'][] =
'evenements';

Most of the time, by also using the "exceptions_des_jointures" description
explained below, it will be sufficient for a SPIP loop to know how to calculate
the joins that it will need to display the various tags requested. If that is not
always sufficient, don’t forget that joins can also be specified in the loops and
criteria themselves (cf. Forcing joins (p.82)).

exceptions_des_jointures

This definition is used to assign a column alias that creates a join with another
table to retrieve another field, so long as the join is possible. It's a bit like the
"exception_des_tables" which declare a join, but is not specific to a given table.
We can then use this alias as a SPIP tag or as a loop criteria.

Note that when we use these joins only as loop criteria like
{titre_mots=xx}, itis preferable to write this as {mots.titre=xx}, which
is a more generic style and does not require a declaration.

149

$interface['exceptions_des_jointures']['colonne_alias'] =
array('table', 'column');

// examples
$interface['exceptions_des_jointures']['titre_mot'] =
array('spip_mots', 'titre');

One special scenario also exists: a third argument can be provided that
contains the name of the function which will create the join. This is a rare
circumstance, one use of which is employed by the "Forms & Tables" plugin

// special case
$interface['exceptions_des_jointures']['forms_donnees']['id_mot']
= array('spip_forms_donnees_champs', 'valeur',
'forms_calculer_critere_externe');

table_des_traitements

These descriptions are very useful; they make it possible to define
standardised processes (filters) for certain SPIP tags. Using an asterisk (i.e.
#TAG*) will deactivate any such processes.

In concrete terms, for each tag, or each tag/loop pair, the functions specified
will be executed. %s will be replaced by the actual contents that the tag returns.

Two constants are available for the most common usages:

// typographical processing

define('_TRAITEMENT_TYPO', 'typo(%s, "TYPO", $connect)');
// SPIP shortcut processing ([->artxx], <cadre>, {{}}, ...)
define('_TRAITEMENT_RACCOURCIS', 'propre(%s, $connect)');

$interface['table_des_traitements']['BALISE'][]=
"filtre_A(%s)';
$interface['table_des_traitements']['BALISE'][]=
'filtre_B(filtre_A(%s))"';
$interface['table_des_traitements']['BALISE'][]=
_TRAITEMENT_TYPO;
$interface['table_des_traitements']['BALISE'][]=
_TRAITEMENT_RACCOURCIS;
$interface['table_des_traitements']['BALISE']['boucle']=
_TRAITEMENT_TYPO;

// examples in SPIP

150

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/define
http://www.php.net/define

$interface['table_des_traitements']['BIO'][]=
_TRAITEMENT_RACCOURCIS;
$interface['table_des_traitements']['CHAPO'][]=
_TRAITEMENT_RACCOURCIS;
$interface['table_des_traitements']['DATE'][]=
'normaliser_date(%s)"';
$interface['table_des_traitements']['ENV'][]=
'entites_html (%s, true)';

// exemples dans le plugin d'exemple "chat"
$interface['table_des_traitements']['RACE']['chats'] =
_TRAITEMENT_TYPO;
$interface['table_des_traitements']['INFOS']['chats'] =
_TRAITEMENT_RACCOURCIS;

An example which is often very useful is the automatic deletion of the numbers
used as prefixes in section titles. This can be implemented using this method
in the config/mes_options.php file (or by using this pipeline in a plugin, of
course!) :

// simple version

$GLOBALS['table_des_traitements']['TITRE'][]=
'typo(supprimer_numero(%s), "TYPO", $connect)';

// complex version (do not overwrite the existing definition)
if (isset($GLOBALS['table_des_traitements']['TITRE'][0])) {

$s = $GLOBALS['table_des_traitements']['TITRE'][0];
} else {
$s = '%s';
3
$GLOBALS['table_des_traitements']['TITRE'][0] =
str_replace('%s', 'supprimer_numero(%s)', $s);
Example

Take the complex example of the Agenda plugin, which declares a table
called spip_evenements(events), a linkage table called
spip_mots_evenenents (keyword events) and a second linkage table
called spip_evenements_participants (event participants).

151

http://www.php.net/isset
http://www.php.net/str_replace

An alias is defined to loop over the events. Explicit joins are declared,
along with a date field and special processes. It uses nearly all of the
features defined above!

function agenda_declarer_tables_interfaces($interface){
// 'spip_' dans 1'index de $tables_principales

$interface['table_des_tables']['evenements']="evenements';

$interface['tables_jointures']['spip_evenements'][]=
'mots'; // to be inserted before the join on articles
$interface['tables_jointures']['spip_articles'][]=
'evenements';
$interface['tables_jointures']['spip_evenements'][]
'articles';
$interface['tables_jointures']['spip_mots'][]=
'mots_evenements';
$interface['tables_jointures']['spip_evenements'][] =
'mots_evenements';
$interface['tables_jointures']['spip_evenements'][]
'evenements_participants';
$interface['tables_jointures']['spip_auteurs'][] =
'evenements_participants';
$interface['table_des_traitements']['LIEU'][]=
'propre(%s)';

// used for critiria such as racine, meme_parent,
id_parent

$interface['exceptions_des_tables']['evenements']['id_parent']="1id_evenen

$interface['exceptions_des_tables']['evenements']['id_rubrique']=array('s
"id_rubrique');

$interface['table_date']['evenements'] =
'date_debut"';
return $interface;

152

http://www.php.net/array

declarer_tables_objets_surnoms

This pipeline creates a relationship between an object type and

its

corresponding SQL table. By default, an ’s’ is added to the end of the object

type name (e.g. the 'article’ object maps to a table called ’articles’).

Pipeline call:

$surnoms = pipeline('declarer_tables_objets_surnoms',
array (
'article' => 'articles',
'auteur' => 'auteurs',
/).
)

These relationships enable the functions table_objet()
objet_type() to work together:

// type...
$type = objet_type('spip_articles'); // article

$type = objet_type('articles'); // article

// table...

$objet = table_objet('article'); // articles

$table table_objet_sql('article'); // spip_articles
// id...
$_id_objet

id_table_objet('articles'); // id_article

$_id_objet id_table_objet('article'); // id_article

Example

The "jeux" plugin uses:

function jeux_declarer_tables_objets_surnoms($surnoms) {

$surnoms['jeu']l = "jeux';
return $surnoms;

$_id_objet = id_table_objet('spip_articles'); // id_article

and

153

http://www.php.net/array

154

declarer_tables_principales

This pipeline declares additional tables or fields. The SQL type of each field
is specified, along with the primary keys and sometimes the secondary keys
(used for joins between tables).

The tables in question are the "principal" ones because they mainly concern
editorial content, whereas "auxiliary" tables (p.145) relate to links between
those principal tables.

These declarations are used by SPIP to:
* manage the display of loops (even if it's optional because SPIP can get
the SQL description of a table that hasn’t been declared),
» create tables (or new fields) during the installation of SPIP or a plugin,
» backup and restore these tables with the default backup manager in
SPIP’s private area.

The function receives as arguments the list of the tables already declared and
returns this same array, now supplemented. In this array, each table is declared
with an associative array of 3 keys (the join key is actually optional):

$tables_principales|['spip_name'] = array(
'field' => array('champ'=>'SQL creation code'),
'key' => array('type' => 'name(s) of the field(s)'),
'join' => array('champ'=>"'join field") // Optional key
DE

SPIP uses this pipeline in the last part of the declaration of the tables that will
be used

Example

The "Agenda" plugin declares a table of events, "spip_evenements", with
a number of fields. It declares the primary key (id_evenement), 3 indices
(date_debut, date_fin and id_article), as well as two possible
keys for use in joins: id_evenement and id_article (the order of
these declared keys determines their priority when establishing joins).

It also declares an "agenda" field in the spip_rubriques table:

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://trac.rezo.net/trac/spip/browser/spip/ecrire/maj/vieille_base/13000/serial.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/maj/vieille_base/13000/serial.php

function
agenda_declarer_tables_principales($tables_principales){
//-- Table EVENEMENTS --------———————————
$evenements = array(
"id_evenement" => "bigint(21) NOT NULL",
"id_article" => "bigint(21) DEFAULT 'O' NOT
NULL",
"date_debut" => "datetime DEFAULT '0000-00-00
00:00:00" NOT NULL",
"date_fin" => "datetime DEFAULT '0000-00-00
00:00:00" NOT NULL",
"titre" => "text NOT NULL",

"descriptif" => "text NOT NULL",
"Tieu" => "text NOT NULL",
"adresse" => "text NOT NULL",

"inscription" => "tinyint(1) DEFAULT O NOT NULL",
"places" => "int(11) DEFAULT O NOT NULL",
"horaire" => "varchar(3) DEFAULT 'oui' NOT NULL",

"id_evenement_source" => "bigint(21) NOT NULL",
"maj" => "TIMESTAMP"
)8
$evenements_key = array(
"PRIMARY KEY" => "jd_evenement",
"KEY date_debut" => "date_debut",
"KEY date_fin" => "date_fin",
"KEY id_article" => "did_article"

DE

$tables_principales|['spip_evenements'] = array(
'field' => &$evenements,
'key' => &$evenements_key,
'join'=>array(
'id_evenement'=>"'id_evenement"',
'id_article'=>"id_article'

));

$tables_principales['spip_rubriques']['field']["'agenda']
= "tinyint(1l) DEFAULT O NOT NULL';
return $tables_principales;

155

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

156

declarer_url_objets
This pipeline is used to generate standard SPIP URLs for the specified objects,
and to calculate the correspondence between a standard URL and its matching
object. These URLs may take the form:

* spip.php?objcetXX (spip.php?article12)

* ?0bjectxX (?article12)

« orthe same with . htm1 at the end.

With the . htaccess file as supplied with SPIP and activated, URLs may also
be like:

+ objectXX (article12)

e objectxX.html (article12.html)

The URL calculated whenever we use SPIP’s URL calculation functions (the
#URL_ tag or the generer_url_entite function) depend on the URL
options selected within the SPIP configuration pages.

This pipeline is called in ecrire/inc/urls.php with a list of predefined objects.
It accepts input parameters and produces output of a table of the list of the
objects that can be used in a URL:

$url_objets = pipeline('declarer_url_objets',
array('article', 'breve', 'rubrique', '
'site', 'syndic'));

mot', 'auteur',

The #URL_nom tag returns a URL for a given object type and specific object
identifier (no need for declarations to do this). This pipeline is used to decode
a standard URL and to identify the object type and object odentifier to which
it applies. Once an object "name" has been declared , ?nameXX in the URL
will enable SPIP to calculate that the object type is "name"; that the "id_name"
identifier is equal to "XX", and that SPIP should therefore try to load the
name.html template for the identifier in question.

The use of this pipeline can be coupled with the declaration of "table_title" in the
declarer_tables_interfaces (p.146) pipeline. This indicates which SQL column
of the object should be relied on to create a meaningful URL.

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/urls.php
http://www.php.net/array

Example

The "Grappes" plugin uses this pipeline making it possible to create URLs
for the new object. #URL_GRAPPE creates a URL modifed for the object
type. SPIP will then know which template to refer to when such a URL is
requested: grappe.html.

function grappes_declarer_url_objets($array){
$array[] = 'grappe';
return $array;

The interface pipeline also declares the title field for meangingful URLs:

function grappes_declarer_tables_interfaces($interface){
4 loool
// Titles for URLs
$interface['table_titre']['grappes'] = "titre, '' AS
Tang";
return $interface;

}

definir_session

Whenever a template requests to use #AUTORISER, #SESSION or any other
tag which requires the creation of a different cache for each session, a special
identifier is calculated with the session information known about the visitor by
the spip_session function. This identifier is used to name the cache files.
When no information is known about the visitor, the identifier returned is null.

The definir_session pipeline is used to complete the information used to
create this identifier. It is also possible to compose unique caches relying on
other parameters rather than data relating to the visitor.

The pipeline receives and returns a character string. It is called as in the file
ecrire/inc/utils.php:

$s = pipeline('definir_session',

$GLOBALS['visiteur_session']
? serialize($GLOBALS|['visiteur_session'])

157

http://en.wikipedia.org/wiki/ecrire%2Finc%2Futils.php
http://www.php.net/serialize

158

. @$_COOKIE['spip_session']

D&

Remarks: the session data can be required very early on in SPIP’s operations,
so it is best to declare the the pipeline function for a plugin directly in the options
file. The declaration in the pTugin.xm1 file does not need to define the XML
tag <inclure> in such circumstances:

<options>prefixPlugin_options.php</options>
<pipeline>

<nom>definir_session</nom>
</pipeline>

Example

The "FaceBook Login" plugin defines a cache name which is also
dependent on the Facebook authentication if that has been validated:

function fblogin_definir_session($flux){
$flux .= (isset($_SESSION['fb_session']) ?
serialize(isset($_SESSION['fb_session'])) : '');
return $flux;

}

The "Forms & Tables" plugin also defines a specific cache when cookies
linked to its forms are discovered:

function forms_definir_session($session){
foreach($_COOKIE as $cookie=>$value){
if (strpos($cookie, 'cookie_form_') !==FALSE)
$session .= "-$cookie:$value";
}

return $session;

We should note that the #FORMS dynamic tag for this plugin requests the
creation of a cache per session by assigning true to the session option
of the tag:

http://www.php.net/isset
http://www.php.net/serialize
http://www.php.net/isset
http://www.php.net/strpos

function balise_FORMS ($p) {

$p->descr['session'] = true;

return calculer_balise_dynamique($p, 'FORMS',
array('id_form', 'id_article',
'id_donnee', 'id_donnee_liee', 'class'));

}

delete_statistiques

This pipeline is called just before executing the operation to delete the statistics
from within the private zone on the ecrire/?exec=admin_effacer page.
This is a trigger: a pipeline which only reports an event without passing any
parameters. As such, this pipeline might be renamed as
trig_delete_statistiques in the future.

pipeline('delete_statistiques', '');

It has not yet been used in any plugin available on the SPIP Zone. This pipeline
should be used to delete the SQL statistics tables that might be added by any
other plugins.

delete_tables

This pipeline is called just before executing the function that totally deletes
the database tables from within the private zone via the ecrire/
7exec=admin_effacer page. It is a trigger: a pipeline which simply takes
note of an event, without any parameters being passed. As such this pipeline
might be renamed as trig_delete_tables in the future.

pipeline('delete_tables', '');

There isn’'t any particularly interesting application of this pipeline within the
plugins available on SPIP Zone. It might be possible to use it to execute
processes on an external database when a SPIP site is reinitialised using the
admin page, or also to send notifications of the purge action (and perhaps the
current admin user’s connection details) to certain nominated recipients as an
audit.

159

http://www.php.net/array

editer_contenu_objet

This pipeline is called during the display of a back-end form for a SPIP object.
It is used to change the HTML content of that form. This pipeline is called as a
CVT form loading parameter (p.241) :

$contexte['_pipeline'] = array('editer_contenu_objet',
array('type'=>$type, 'id'=>$%id));

The pipeline passes:
» the type (type), the object identifier (id) and the compilation context
(the contexte table) using the args table
« the HTML code in the data key

Example
The "OpenlD" plugin adds a data entry field into the author creation form:

function openid_editer_contenu_objet($fTux){
if ($flux['args']['type']=="auteur') {
$openid = recuperer_fond('formulaires/inc-
openid', $flux['args']['contexte']);
$flux['data'] = preg_replace('%(<T1i

class="editer_email(.*?)</1i>)%is', '<!--extra--
>"."\n".%openid, $flux['data']);
}

return $flux;

formulaire_charger

The formuTaire_charger pipeline is used to modify the table of values that
passed from the charger function for a CVT form. It is therefore called when
displaying a form from the ecrire/balise/formulaire_.php file.

It is passed a parameter of the form name as well as the parameters passed
to the form in the charger, verifier and traiter functions. It returns the
table of values to be loaded.

$valeurs = pipeline(

160

http://www.php.net/array
http://www.php.net/array
http://www.php.net/preg_replace
http://trac.rezo.net/trac/spip/browser/spip/ecrire/balise/formulaire_.php

'formulaire_charger',

array (
'args'=>array('form'=>$form, 'args'=>$args),
'data'=>$valeurs)

Example

The "noSpam" plugin uses this pipeline to add a token indicating a validity
period for the forms nominated in a global variable:

$GLOBALS['formulaires_no_spam'][] = 'forum';
//
function nospam_formulaire_charger($flux){
$form = $flux['args']['form'];
if (in_array($form,
$GLOBALS['formulaires_no_spam'])){
include_spip("inc/nospam™);
$jeton = creer_jeton($form);
$flux['data']['_hidden'] .= "<input type='hidden'
name='_jeton' value='$jeton' />";
3

return $flux;

formulaire_traiter

This pipeline is called in ecrire/public/aiguiller.php after the processes (p.0)
have been run for a CVT form. It is used to supplement the response table or
to perform any additional processes.

It accepts the same arguments as the formulaire_charger (p.160) or
formulaire_verifier (p.162) pipelines. It returns the table of data that are the
results of processing (error message, success message, redirection, editable
form refresh...).

$rev = pipeline(
'formulaire_traiter',
array (
'args' => array('form'=>$form, 'args'=>$%args),

161

http://www.php.net/array
http://www.php.net/in_array
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/aiguiller.php
http://www.php.net/array
http://www.php.net/array

'data' => $rev)

Example

The "Licence" plugin, which offers the opportunity to assign a usage
licence to articles, uses this pipeline to save the default licence value in
the configuration details whenever a new article is created:

function Ticence_formulaire_traiter($fTux){
// if creating a new article, assign it the
configured default Ticence
if ($flux['args']['form'] == 'editer_article' AND
$flux['args']['args'][0] == 'new') {
$id_article = $flux['data']['id_article'];
$1icence_defaut = Tire_config('licence/
Ticence_defaut');
sql_updateq('spip_articles', array('id_licence'
=> $1icence_defaut), 'id_article='
intval($id_article));
}

return $flux;

Notes:
» the Tire_config() PHP function belongs to the configuration
plugin "CFG".
» in SPIP 2.1, it will be more relevant to use the pre_insertion (p.172)
pipeline for this specific example.

formulaire_verifier

This pipeline is called from ecrire/public/aiguiller.php during the verification of
data submitted from a CVT form. It is used to complete the array of errors
returned by the verifier (p.242) function for the form in question.

162

http://www.php.net/array
http://www.php.net/intval
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/aiguiller.php

It is passed the same argument parameters as the formulaire_charger (p.0)
pipeline, those being the form name as well as the parameters passed in the
the charger, verifier and traiter functions. It returns the array of errors

as output.

$verifier =
charger_fonction("verifier","formulaires/$form/", true);
$post["erreurs_$form"] = pipeline('formulaire_verifier',
array (
'args' => array(
'form'=>$form,
'args'=>%args),
'data'=>$%verifier
? call_user_func_array($verifier, $args)
:array());

Example

The "OpenlID" plugin uses this pipeline to verify that the provided OpenID
URL is valid when an author edits his details, and if not, it provides an
error message tagged for the field in question.

function openid_formulaire_verifier($flux){
if ($flux['args']['form'] == 'editer_auteur'){
if ($openid = _request('openid')){
include_spip('inc/openid');
$openid = nettoyer_openid($openid);
if (lverifier_openid($openid))
$flux['data']['openid'] =
_T('openid:erreur_openid');
}
}
/Y Loaod

return $flux;

header_prive

The header_prive pipeline is used to add content into the HTML <head>
section of pages in the private zone. It works like the insert_head (p.164)
pipeline.

163

http://www.php.net/array
http://www.php.net/array
http://www.php.net/call_user_func_array
http://www.php.net/array

The pipeline accepts a parameter and returns as output the contents of the
HEAD section:

function prefixPlugin_header_prive($flux){
$flux .= "<!-- a comment for no reason at all! -->\n";
return $flux;

Example

The "Notations" plugin uses this hook to add CSS declarations for both
private and public pages (it also uses insert_head):

function notation_header_prive($flux) {
$flux = notation_insert_head($flux);
return $flux;

3
function notation_insert_head($fTux){

$flux .= '<link rel="stylesheet" href=""'
_DIR_PLUGIN_NOTATION .'css/notation.v2.css" type="text/

css" media="all" />';
return $flux;

The "Open Layers" plugin enables the use of ‘Open Street Map’ maps and
uses this function to load the necessary JavaScript code:

function openlayer_insert_head_prive($fTux){

$fTux .= '<script type="application/javascript"
src="http://www.openlayers.org/api/
OpenLayers.js"></script>

<script type="application/javascript" src=""'
_DIR_PLUGIN_OPENLAYER . 'js/openlayers.js"></script>

<script type="application/javascript"
src="http://openstreetmap.org/openlayers/
OpenStreetMap.js"></script>"';

return $flux;

}

164

insert_head
The insert_head pipeline adds some content into the <head> section of an
HTML page:
* wherever the #INSERT_HEAD tag has been used,
« otherwise just before </head> if the function f_insert_head is called
in the affichage_final (p.126) pipeline - for example with this line in
mes_options.php:

$spip_pipeline['affichage_final'] .= '|f_insert_head';

The pipeline accepts the contents to be added as arguments and returns the
completed contents:

function prefixPlugin_insert_head($flux){
$flux .= "<!-- A comment that does nothing ! -->\n";
return $flux;

Example

Add in a jQuery function call, in this case, to display a toolbar for
textarea tags in the Crayons forms (with the plugin "Porte Plume"):

function documentation_insert_head($flux){
$flux .= <<<EOF

<script type="text/javascript'>

<!--

(function($){

$(document) . ready(function(){
/* Add a porte plume toolbar into crayons */
function barrebouilles_crayons(){

$('.formulaire_crayon textarea.crayon-

active').barre_outils('edition');
I
barrebouilles_crayons();
onAjaxLoad(barrebouilles_crayons);

FDE

P (GQuery);

==

165

166

</script>
EOF;
return $flux;

}

The onAjaxLoad JavaScript function is used here to provide the given
function as a parameter during the AJAX load of a page element.

insert_head_css

The insert_head_css pipeline is used by plugins to insert the CSS files
that they need to operate correctly into the section of the SPIP template that
includes the #INSERT_HEAD_CSS tag if there is one, and if not then at the start
of the code included using the #INSERT_HEAD tag. This allows a template to
indicate a specific location for additionally loaded CSS code.

It is called quite simply by using:

return pipeline('insert_head_css', '');

Example

The "Porte Plume" extension uses it in a simplified manner to add two
CSS files, the second being a SPIP template file:

function porte_plume_insert_head_css($flux) {

$css = find_in_path('css/barre_outils.css');

$css_icones =
generer_url_public('barre_outils_icones.css');

$flux .= "<Tink rel="stylesheet' type='text/css'
media="'all' href="$css' />\n"

"<Tink rel="stylesheet' type='text/css'

media="all' href='$css_icones' />\n";

return $flux;

}

jquery_plugins
This pipeline makes it easy to add JavaScript code which will be inserted into
every public and private page (which uses the tag #INSERT_HEAD (p.38)).

It receives and returns an array that contains the paths (these paths will be
completed by the function find_in_path() (p.108)) of the files to be inserted:

$scripts = pipeline('jquery_plugins', array(
'javascript/jquery.js',
'javascript/jquery.form.js',
'javascript/ajaxcallback.js'

));

Example
Add the script "jquery.cycle.js" to every page:

function pluginPrefix_jquery_plugins($scripts){
$scripts[] = "javascript/jquery.cycle.js";
return $scripts;

lister_tables_noerase
This pipeline is used to specify the SQL tables not to be emptied just before a
restore.

It is called by the Tister_tables_noerase function in the ecrire/base/
dump.php file. It accepts as parameter and returns as output an array
containing the list of database tables not to be purged:

$IMPORT_tables_noerase = pipeline('lister_tables_noerase',
$IMPORT_tables_noerase);

lister_tables_noexport
This pipeline is used to declare SQL tables which will not be included in the
SPIP back ups.

167

http://www.php.net/array
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/dump.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/dump.php

168

It is called from the Tister_tables_noexport function in the ecrire/base/
dump.php file. It accepts a parameter and returns as output an array containing
the list of database tables not to be backed up:

$EXPORT_tables_noexport = pipeline('lister_tables_noexport',
$EXPORT_tabTles_noexport) ;

By default, certain SPIP tables are already excluded, these being the tables
used for statistics, searches and revisions.

Example

The "Géographie" plugin uses this pipeline to nominate not to export its
SQL tables that contain the geographical data (these are very large):

function geographie_Tlister_tables_noexport($liste){

$1iste[] = 'spip_geo_communes"';
$1iste[] = 'spip_geo_departements';
$1iste[] = 'spip_geo_regions';

$1iste[] = 'spip_geo_pays';
return $liste;

lister_tables_noimport
This pipeline is used to specify the SQL tables not to be imported during the
restore of an internal SPIP backup.

It is called by the Tister_tables_noimport function in the ecrire/base/
dump.php file. It accepts as parameter and returns as output an array
containing the list of database tables not to be imported:

$IMPORT_tables_noimport = pipeline('lister_tables_noimport',
$IMPORT_tables_noimport) ;

http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/dump.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/dump.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/dump.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/dump.php

optimiser_base_disparus

Called from ecrire/genie/optimiser.php, this pipeline is used to supplement the
cleaning operations for orphaned items, by deleting such items during standard
periodic task scheduling.

$n = pipeline('optimiser_base_disparus', array(
'args'=>array(
'attente' => $attente,
'date' => $mydate),
'data'=>$%n

));

As parameters, it receives the expected inter-operation delay (attente) as well
as the corresponding expiry date. The "data" argument array stores the number
of items deleted. The optimiser_sansref () function is used to manage the
deletion of the records by providing 3 argument parameters:

» the table,

» the primary key,

» an SQL query result containing only an "id" column listing the identifiers

targeted for deletion.

Example

To delete forums that belong to an obsoleted section, the "Forum" plug
uses this pipeline as shown below:

function forum_optimiser_base_disparus($flux){
$n = &$flux['data'];
forums linked to a non-existent id_rubrique
(section)
$res = sql_select("forum.id_forum AS id",
"spip_forum AS forum
LEFT JOIN spip_rubriques AS rubriques
ON
forum.id_rubrique=rubriques.id_rubrique",
"rubriques.id_rubrique IS NULL
AND forum.id_rubrique>0");

$n+= optimiser_sansref('spip_forum', 'id_forum',
$res);
44 Loool

return $flux;

169

http://trac.rezo.net/trac/spip/browser/spip/ecrire/genie/optimiser.php
http://www.php.net/array

post_typo

The post_typo pipeline is used to modify text after SPIP has applied its
normal typographical processes, and therefore also after the pre_typo (p.174)
pipeline. It is called by the corriger_typo() function in ecrire/inc/texte.php,
a function which itself is called when using the propre () or typo () functions.

$letexte = pipeline('post_typo', $letexte);

Example

The "Typo Guillemets" plugin replaces quotation marks " in a piece of

entered text with the appropriate equivalent depending on the language
code, such as using « and » for French texts. To do this, it analyses the

text for typographical short-cuts that have been applied as shown below:

function typo_guillemets_post_typo($texte) {

// ...
switch ($GLOBALS['spip_lang']) {
case 'fr':
$guilles="« »";
//LRTEUIN
break;
// ...
}

// escape any " found in the tags;

// note <!--extra--> is the character chr(l), and <!-
-extra--> represents the tag

$texte = preg_replace(',<[A>]*"[A>]*(>|$),msSe",
"str_replace('\"', '<!--extra-->", \"<!--extra-->\")",
$texte);

// We correct any remaining quotes, which are by
definition not within tags

// A quote is not processed if it follows a non-space
character, or

// if it is followed by a word (letter, digit)

170

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/texte.php
http://www.php.net/preg_replace

$texte = preg_replace('/(A|\s)"\s?([A"]*?)\s?"(\W|$)/

S', '<!--extra-->'.$guilles.'', $texte);
// and put back the quotes in any tags
return str_replace("<!--extra-->", '"', $texte);
3
pre_boucle

The pipeline pre_boucle modifies the SQL queries that result from the
interpretation of the loops of SPIP. It is called at each compilation phase,
after the compiler has already taken into account the selection criteria (the
critere_NAME() functions), and before the call to the boucTe_NAME()
functions.

It receives as argument a "Boucle" object that contains the data issued from
the previous compilation steps for the current loop.

It is therefore possible to take actions based on the criteria that are passed to
the loop, like modifying the selection parameters or the "where" condition for
the loop’s SQL query.

Example

The "mots techniques" plugin adds a technical field to the groups of
keywords of SPIP.

When there is no {technique} criteria passed to the loop
GROUPE_MOTS, the loop automatically filters its results, returning only
those where the field {technique} is empty. This same feature could
also be implemented by creating a function called
boucle_GROUPES_MOTS().

function mots_techniques_pre_boucle($Toop){

if ($loop->type_requete == 'groupes_mots') {
$table_name = $1oop->id_table;
$technical_kw = $table_name .'.technique';

1/

http://www.php.net/preg_replace
http://www.php.net/str_replace

172

// Select only the Toop without the "technical"
keyword

if (!isset($Toop-
>modificateur['criteres']['technique']) &&

lisset($loop->modificateur['tout'])) {
$loop->where[]= array("'="",

"'"$technical_kw'", ""\"\"'");

}

}

return $loop;

The array $1oop->where[] contains arrays with 3 entries: successively
being the operator, the field and the value. Here, we add to the query the
string {$table_name}.technique="" with:

(Rl

, "'$technical_kw'",

$boucle->where[]= array(
"IN\

pre_insertion
This pipeline is used to add default content when a new editorial element is
being inserted into the database.

When an editorial item is requested to be saved, it has not yet been allocated
a unique identifier (implying it is a new item), so an identifier is automatically
created for that item using the insert_xx functions, where xx is the name of
the intended object. This insertion pipeline has the simple goal of returning an
identifier and saving the item’s default values. The pipeline is called from these
insert_xx functions.

Once the identifier has been established, the normal modification tasks are
performed using the xx_set and modifier_contenu functions which call
the pre_edition and post_edition pipelines. Those tasks are the ones
that will save the data entered by the user, and which will therefore do so even
for new items.

This pipeline passes the table name and an array of fields and default values
to be inserted:

http://www.php.net/isset
http://www.php.net/isset
http://www.php.net/array
http://www.php.net/array

$champs = pipeline('pre_insertion',
array (
‘args' => array(
'table' => 'spip_rubriques"',
Do

'data' => $champs

Example

The "Forum" plugin adds the forum status value for an article when it is
created using the code below:

function forum_pre_insertion($flux){
if ($flux['args']['table']=="spip_articles'){
$flux['args']['data']["'accepter_forum'] =
substr($GLOBALS['meta']['forums_publics'], 0, 3);
}

return $flux;

pre_liens

The "pre_liens" pipeline is used to process typographical shortcuts relating
to links of the form[title->url]. It is called by the expanser_1liens()
(expand_link) function, which is itself called by the propre () function.

$texte = pipeline('pre_liens', $texte);

SPIP itself makes use of this entry point to execute processes that include
3 functions in the definition of the pipeline in the ecrire/inc_version.php file,
defined within ecrire/inc/lien.php :
* traiter_raccourci_1liens automatically generates links for a piece
of text that looks like a URL,
* traiter_raccourci_glossaire generates [?tit1e] shortcuts
pointing to a glossary (p.316).
* traiter_raccourci_ancre takes care of [<-anchor name]
shortcuts that create a named anchor point

173

http://www.php.net/array
http://www.php.net/array
http://www.php.net/substr
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc_version.php#L283
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/lien.php

Example

The "documentation" plugin (which manages this same documentation),
uses this pipeline to automatically add a title attribute on internal
link shortcuts of the form [->art30], transforming them into
[lart30->art30] (this workaround serves to display the page number
relating to the link when exporting the contents of the documentation in
PDF format)

function documentation_pre_liens($texte){
// only for the public site
if (test_espace_prive()) return $texte;
$regs = $match = array();
// for each 1ink
if (preg_match_al1(_RACCOURCI_LIEN, $texte, $regs,
PREG_SET_ORDER)) {
foreach ($regs as $reg) {
// if the shortcut is of the form "art40"
if (preg_match(_RACCOURCI_URL, $reg[4],

$match)) {
$title = "|" . $match[1] . $match[2];
// if this title doesn't already exist
if (false === strpos($reg[0], $title)) {

$1ien = substr_replace($reg[0],
$title, strpos($reg[0], '->'), 0);
$texte = str_replace($reg[0], $1ien,

$texte);
}
h
3
}
return $texte;
3
pre_Iypo

The pre_typo pipeline is used to modify the text before the typographical
processes envisaged by SPIP are executed. It is called by the
corriger_typo() function in ecrire/inc/texte.php, a function which is itself
called when using the propre() or typo() functions.

174

http://www.php.net/array
http://www.php.net/preg_match_all
http://www.php.net/preg_match
http://www.php.net/strpos
http://www.php.net/substr_replace
http://www.php.net/strpos
http://www.php.net/str_replace
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/texte.php

$letexte = pipeline('pre_typo', $letexte);

The modifications proposed must only apply processes to the elements that
can be displayed on a single (inline) line. For processes that modify or create
blocks or paragraphs, you must use the pre_propre pipeline.

Example

The "Enluminures Typographiques" plugin automatically modifies how
some character strings are displayed, e.g. transforming "(c)" into "©":

function typoenluminee_pre_typo($texte) {
/Y coc
$chercher_raccourcis = array(
// ...
/* 19 */ "/\(c\)/si",
/%20 %/ "/\NC(r\)/si",
/* 21 */ "/\NCEm\)/sit,
/* 22 N ACAANY/S i
Vb
$remplacer_raccourcis = array/(
// ...
/2 8 &7 "©",
/%20 %/ "®",
/& 2l 67 "™",
/* 22 */ "…",
b
// ...
$texte = preg_replace($chercher_raccourcis,
$remplacer_raccourcis, $texte);
// ...
return $texte;
3

175

http://www.php.net/array
http://www.php.net/array
http://www.php.net/preg_replace

176

rechercher_liste_des_jointures

This pipeline, used in ecrire/inc/rechercher.php, is used to declare the searches
that should be executed on other tables rather than the table explicitly
referenced in a loop. For example, a search for an author name for an
ARTICLES loop returns the articles that this author has written (by searching in
the spip_auteurs_articles table).

This pipeline receives an array of tables containing an array of table, field,
weighting triplets (like the pipeline "rechercher_liste_des_champs" (p.122)).

Example

Some modifications for the spip_articles table:

function
pluginPrefix_rechercher_Tliste_des_jointures($tables){

// search in the BIO field of authors when we search
in the articles

$tables['article']['auteur']['bio'] = 2;

// search in the text of the keywords

$tables['article']['mot']['texte'] = 2;

// do not search in the documents

unset($tables['article']['document']);

return $tables;

In SPIP, this pipeline is used to search for elements using their linked
keywords or authors

recuperer_fond

The "recuperer_fond" pipeline is used to add to or modify the compilation
results of a given template file. As input, it accepts the name of the selected
"fond", or model template, and the compilation context within the args table,
as well as the table describing the results in the data table.

$page = pipeline('recuperer_fond', array(
'args'=>array(
'fond'=>$fond,

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/rechercher.php
http://www.php.net/unset
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/rechercher.php#liste_des_jointures
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/rechercher.php#liste_des_jointures
http://www.php.net/array

'contexte'=>$contexte,

'options'=>$options,

'connect'=>$connect),
'data'=>$%page));

Very often, only the texte key in the data table will be modified. Please refer
to the recuperer_fond() (p.110) article for a full description of this table.

Example

The "fblogin" plugin is used to identify visitors with their Facebook
credentials. It adds a button to SPIP’s normal identification form. The
"social_login_links" pipeline (in the same plugin) returns the HTML code
for a link pointing to the Facebook identification page.

function fblogin_recuperer_fond($fTux){
if ($flux['args']['fond'] == 'formulaires/login'){
$login = pipeline('social_login_links', '');
$flux['data']['texte'] = str_replace('</form>",
'</form>"' . $login, $flux['data']['texte']);
}

return $flux;

rubrique_encours

This is used to add contents into the "Proposed for publication" panel displayed
for sections. This panel will only be displayed when there is at least one
element (article, site, news item...) in that section that has been proposed for
publication.

It is called from ecrire/exec/naviguer.php:

pipeline('rubrique_encours', array(

'args' => array('type' => 'rubrique', 'id_objet' =>
$id_rubrique),

'data' => $encours));

177

http://www.php.net/str_replace
http://trac.rezo.net/trac/spip/browser/spip/ecrire/exec/naviguer.php
http://www.php.net/array
http://www.php.net/array

178

Example

The "Forum" plugin uses this pipeline to add a phrase encouraging
comments for the articles proposed for publication:

function forum_rubrique_encours($flux) {
if (strlen($flux['data'])
AND $GLOBALS['meta']['forum_prive_objets'] !=
'non")
$flux['data'] =
_T('texte_en_cours_validation_forum') . $flux['data'];
return $flux;

}

styliser
This pipeline modifies the way in which SPIP searches for the template to use
to compute a page - and for example, to change it for a specific section.

You can use it like this :

// pipeline styliser
$template = pipeline('styliser', array(
'args' => array(
'id_rubrique' => $sectionid,
'ext' => $ext,
'fond' => $initialTemplate,
'lang' => $lang,
'connect' => $connect
Do
'data' => $template,
VD&

It receives some arguments found in the environment context and returns the
name of the template that will be used by the compilation.

If the url is spip.php?articlel8, the arguments will be :
« id_rubrique = 4 (if the article is in section number 4)
» ext =’html’ (the default extension for templates)
« fond = "article’ (name of the template initially used)
* lang ="fr

http://www.php.net/strlen
http://www.php.net/array
http://www.php.net/array

« connect =" (SQL connection name).

Example :

The plugin "Spip-Clear" uses this pipeline to call some specific templates for

the different branches of the blog:

// defines the template to use for a section of Spip-Clear
function spipclear_styliser($flux){

// article or section ?

if (($fond = $flux['args']['fond'])

AND 1in_array($fond, array('article', 'rubrique'))) {

$ext = $flux['args']['ext'];
4 Loool
if ($section_id = $flux['args']['id_rubrique']) {
// calculates the branch
$branch_id = sql_getfetsel('id_secteur',
'spip_rubriques', 'id_rubrique=' . intval($section_id));
// comparison of the branch with the config of
Spip-Clear
if (in_array($branch_id, Tire_config('spipclear/
secteurs', 1))) {
// if the template $fond_spipclear exists
if ($template =
test_squelette_spipclear($fond, $ext)) {
$flux['data'] = $template;
}

}
}
return $flux;
3
// returns a template $fond_spipclear.$ext when it exists
function test_squelette_spipclear($fond, $ext) {
if ($template = find_in_path($fond."_spipclear.$ext")) {
return substr($template, 0, -strlen(".$ext"));
}

return false;

179

http://www.php.net/in_array
http://www.php.net/array
http://www.php.net/intval
http://www.php.net/in_array
http://www.php.net/substr
http://www.php.net/strlen

1860

taches_generales_cron
This pipeline is used to declare functions that will be periodically executed by
SPIP. It is called in the ecrire/inc/genie.php file by the taches_generales

function, accepting a parameter and returning output of a keyed array, using
function names as the key and the time between execution runs as the value.

return pipeline('taches_generales_cron', $taches_generales);

Please read the section on the Wizard (p.227) for further information.

Example

Any plugin whatsoever could declare a cleaning function to be run every
week:

function carte_postale_taches_generales_cron($taches){
$taches['nettoyer_cartes_postales'] = 7%24%3600; //
every week
return $taches;

}

This function is contained in the genie/
nettoyer_cartes_postales.php file. It deletes all the files in a given
directory that are older than 30 days, by using the purger_repertoire
function:

function genie_nettoyer_cartes_postales_dist($t){
// Purge postcards that are older than 30 days
include_spip('inc/invalideur');

purger_repertoire(_DIR_IMG . 'cartes_postales/',
array (
'atime' => (time() - (30 * 24 * 3600)),
)
return 1;

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/genie.php
http://www.php.net/array
http://www.php.net/time

trig_supprimer_objets_lies

This pipeline is a trigger (returns no output) which is called when certain objects
are deleted. It makes it possible to delete data stored in linkage tables at the
same time as an object is deleted. It is passed an array of the various deletions
to be made (containing the deleted object type and identifier).

pipeline('trig_supprimer_objets_lies', array(
array('type'=>"mot', 'id'=>$id_mot)
))s

This pipeline is called for deletion of a keyword and for a message.

Example

The "Forum" plugin uses this pipeline to delete links with forum messages
that are associated with a deleted keyword or message (from the mailbox):

function forum_trig_supprimer_objets_lies($objets){
foreach($objets as $objet){
if ($objet['type']=="message')
sql_delete("spip_forum"™, "id_message=" .
sql_quote($objet["'id']));
if ($objet['type']=="mot')
sql_delete("spip_mots_forum", "id_mot=" .
intval($objet['id']));
3

return $objets;

... and the rest of them

There are a handful of pipelines that have not yet been documented. They are
listed here for information purposes only:

1. affiche_formulaire_login

afficher_nombre_objets_associes_a

afficher_revision_objet

arbo_creer_chaine_url

agenda_rendu_evenement

base admin_repair

ook W

161

http://www.php.net/array
http://www.php.net/array
http://www.php.net/intval

162

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

calculer_rubriques
exec_init
formulaire_admin
libelle_association_mots
mots_indexation
nettoyer_raccourcis_typo
notifications
objet_compte_enfants
page_indisponible
post_boucle
post_image_filtrer
pre_propre

post_propre

pre_edition

post_edition
pre_syndication
post_syndication
pre_indexation
propres_creer_chaine_url
requete_dico
trig_calculer_prochain_postdate
trig_propager_les_secteurs

Tags
The balise directory stores the declarations of dynamic tags and SPIP’s generic
tags.

Dynamic tags

Dynamic tag are tags which are recalculated every time that the page is
displayed, as opposed to static tags which are calculated only when the page is
recalculated, either manually by a site administrator or automatically because
the page cache has exceeded its expiry date/time.

These dynamic tags therefore store in the generated cache files a section of
PHP which will be executed when the page is displayed. In principle, they are
essentially used for displaying web forms.

A dynamic tag file may contain up to 3 essential functions:
balise_NAME_dist(), balise_NAME_stat(), balise_NAME_dyn().

The balise_NAME_dist function

The first function for a dynamic tag is the same function used for static tags,
that is, a function with that tag’s actual name: balise_NAME_dist().

This function, instead of inserting a static code, will call a function generating a
dynamic code: calculer_balise_dynamique().

Generally speaking, the contents of the function contine with calling the
dynamic calculation, as with this following tag example for #L.OGIN_PRIVE :

function balise_LOGIN_PRIVE ($p) {
return calculer_balise_dynamique($p, 'LOGIN_PRIVE',
array('ur1'));

}

The tag function is passed the $p variable containing the data originating from
the analysis of the template in question (arguments, filters, to which loop it
belongs, etc.).

183

http://www.php.net/array

164

The calculer_balise_dynamique function accepts 3 or 4 arguments:

« the $p description

» the name of the dynamic tag to execute (normally the same name as the
tag!)

» an array of arguments to be retrieved from the page context. At this point,
the dynamic tag requests the retrieval of a ur1 parameter originating
from the context (the closest loop or the template compilation
environment). If there is no parameter to be retrieved from the context,
then it must be passed an empty array ().

» the optional 4th argument is used to pass an array of elements that will be
passed to the following function (balise_NOM_stat), thereby
completing the $context_compil array. This then allows the
calculation of the elements in the balise_NoM_dist () function and to
pass them on.

The balise_ NAME_stat() function

If it exists, the balise_NAME_stat() function will make it possible to
calculate the arguments to be passed to the following (_dyn()) function.
In its absence, only the arguments specified in the
calculer_balise_dynamique() function are passed (in the order of the
array). The stat function will make it possible to additionally pass the
parameters originating from arguments or filters passed to the tag.

The function is passed 2 arguments: $args and $context_compil.

+ $args contains the arguments required by the
calculer_balise_dynamique() function, in addition to the
arguments passed to the tag.

+ $context_compil is an array of data about the completed compilation,
containing 5 entries (template name, compiled file name, the name of the
loop where the tag is used, line number, language), possibly followed by
optional array elements supplied by the principal function for dynamic
tags (the 4th argument of the balise_dynamique function).

Example

Referring again to the #LOGIN_PUBLIC example: it works with either 1
or 2 arguments: the first is the redirection URL after being connected, the
second is the default user name for the person to be connected. Both of
these are optional.

We can therefore pass a redirection argument to the tag:
#LOGIN_PUBLIC{#SELF} or #LOGIN_PUBLIC{#URL_ARTICLE{8}},
but in the absence of an argument, we would like that the redirection
be made to an environment URL parameter if there is one. Once having
requested to retrieve this argument, it is found in $args[0]. with
$args[1] storing the contents of the first argument passed to the tag (it
adds itself into the $args array after the list of arguments automatically
retrieved). This ends up with:

function balise_LOGIN_PUBLIC_stat($args, $context_compil)
{
return array(
isset($args[1])
? $args[1]
: $args[0],
(isset($args[2])
? $args[2]
D)

If $args[1] exists, it is passed, otherwise $args[0]. In the same
manner, if $args[2] exists, it is also passed, otherwise ”.

The _dyn() function will be passed these 2 arguments:

function balise_LOGIN_PRIVE_dyn($url, $login) {

}

165

http://www.php.net/array
http://www.php.net/isset
http://www.php.net/isset

166

The balise_NAME_dyn() function

This function is used to execute the processes to be performed when a form
has been submitted. The function may return a character string (which will be
displayed on the requesting page) or a parameter array which indicates the
name of the template to retrieve and the compilation context.

The processes
This article will not address these operations for 2 reasons:
« the original author of this article (and the translator) does not completely
understand how it works,
» itis not very useful since SPIP includes a simpler mechanism called "CVT
forms" (Charger, Vérifier, Traiter), in English: (Load, Verify, Process)
which also relies on this function but in a transparent manner.

The display
Whatever the function returns is then displayed on the page. An array indicates
a template to be called. It generally looks like this:

return array("template_address",
3600, // cache duration
array(// context
'id_article' => $id_article,

)

E

Generic tags

Another clever SPIP mechanism is the provisioning of tags that might be
termed as generic. In fact, it is possible to use a single tag declaration for a
whole group of tags prefixed with an identical name.

As such, a tag named #PREFIX_NAME can use a file called balise/
prefix_.php and delcare a function balise_PREFIX__dist() which will
then be used if there is no balise_PREFIX_NAME_dist($p) function
present.

http://www.php.net/array
http://www.php.net/array

The generic function, which accepts tag attributes in the $p variable, can
use $p->name_field to obtain the name of the requested tag (in this case

"PREFIX_NAME"). By analysing this name, it can then execute the appropriate
actions.

Example

This example is used by the generic tags #FORM_NAME, which are also
dynamic fields (in the file ecrire/balise/formulaire_.php).

function balise_FORM__dist($p) {
preg_match(",AFORM_(.*)?$,", $p->name_field, $regs);
$form = $regs[1];
return

calculer_balise_dynamique($p, "FORM_$form",array());

h

Retrieving the object and id_object
This article will show how to retrieve the type (object) and identifier of a loop,
so that they can be used in the calculations of a tag.

Static tags
With the parameters for the tag $p, it is very simple to retrieve both object
and id_object:

function balise_DEMO($p){
// take the name of the object's primary key to calculate
its value
$_id_objet = $p->boucles[$p->id_boucle]->primary;
$id_objet = champ_sql($_id_objet, $p);
$objet = $p->boucles[$p->id_boucle]->id_table;
$p->code = "calculer_balise_DEMO('$objet', $id_objet)";
return $p;
3
function calculer_balise_DEMO($objet, $id_objet){
$objet = objet_type($objet);
return "Objet : $objet, id_objet : $id_objet";

167

http://trac.rezo.net/trac/spip/browser/spip/ecrire/balise/formulaire_.php
http://www.php.net/preg_match
http://www.php.net/array

168

Note that there are two functions here. The first uses the description of the
tag to retrieve the name of its parent loop and the name of the primary key,
and requests to retrieve the value of the primary key using the champ_sq1()
function. Note: what is retrieved in the $id_object variable is a code which
must be evaluated using PHP (which is no longer a numeric value).

Once these parameters have been retrieved, we then add a PHP code to be
evaluated in the code generated by the template compilation (this code will be
cached). This is what is added into $p->code. That code will then next be
evaluated during the creation of the called page cache.

The calculer_balise_DEMO() function is then passed the two desired
arguments and returns a text which displays them on the page.

<BOUCLE_a(ARTICLES){0,2}>
#DEMO

</BOUCLE_a>
<hr />
<BOUCLE_r(RUBRIQUES){0,2}>
#DEMO

</BOUCLE_r>

This template then enables the result to be seen, the #DEMO tag is passed the
various data depending on the context in which it is found:

Object : article, id_object : 128
Object : article, id_object : 7

Object : rubrique, id_object : 1
Object : rubrique, id_object : 2

Dynamic tags
For a dynamic tag, its operation even prevents the simple retrieval of the type
and identifier of the loop in which it has been written.

Even so, when it is needed, for example in creation of CVT forms which modify
their processes depending on the type of loop, it is necessary to pass the object
type and current loop identifier to the _dyn() function (and consequently to
CVT’s load, verify and process functions).

The call tocalculer_balise_dynamique() makes it possible to retrieve
the compilation context elements. If we ask to retrieve ’id_article’, we will
certainly get one from within an ARTICLES loop, but not if we are in a
RUBRIQUES loop. To be more specific, when we request an ’id_article’ value,
SPIP acts as if it is retrieving the result from an #ID_ARTICLE tag, so it then
looks for the value in the closest loop, otherwise it looks in the context, and it
also depends on the tags which have been specifically declared.

We could ask to calculate id_object quite easily, but object will require
passing a tag returning the object value. This tag does not exist by default
within SPIP 2.x, so it must be created with a (DEMODYN_OBJET), which gives
us:

function balise_DEMODYN($p) {
// primary key
$_id_objet = $p->boucles[$p->id_boucle]->primary;
return calculer_balise_dynamique(
$p, 'DEMODYN', array('DEMODYN_OBJET', $_id_objet)
Dk
3
function balise_DEMODYN_OBJET($p) {
$objet = $p->boucles[$p->id_boucle]->id_table;
$p->code = $objet ? objet_type($objet)
"balise_hors_boucle";
return $p;
3
function balise_DEMODYN_dyn($objet, $id_objet){
return "Objet : $objet, id_objet : $id_objet";
3

189

http://www.php.net/array

190

Creating pages in the private zone

The pages in the private zone can be supplemented by creating new files to
alter them.

There are two different ways to install such pages:
* In the exec directory, where they can be written using PHP.
» In the privelexec directory, where they can be written using SPIP
template code.

The contents of a (template) exec file
A call from within the private zone of a 7exec=name page automatically loads
a template located in prive/exec/name.html.

In most cases, it is recommended to use this method rather than a PHP file.
The objective being that SPIP’s private zone itself also be written as a template,
and therefore be easier to customise. This then makes it possible to use loops,
includes, tags, and authorisations just like any other regular SPIP template.

Example of an empty private page template:

<!--#hierarchie-->
<ul 1id="chemin">
<1i>A Tist of pages constituting a breadcrumb path</1i>

<!--/#hierarchie-->

<h1l>A private page directly coded in a template file</hl>
<p>Some page content</p>

<!--#navigation-->

<div class="cadre-info'>

Some information in a navigation column.

</div>

<!--/#navigation-->

<!--#extra-->

Some extra content in the extra column.

<!--/#extra-->

The <!--#hierarchie-->, <!--#navigation--> and <! --#extra-->
frame tags serve to separate the page’s major sections. SPIP’s private zone
will automatically relocate each of these sections into the appropriate HTML
tags.

If the template only returns an empty result, then SPIP will automatically
generate an authorisation error.

From a technical point of view, these templates are processed by the ecrire/
exec/fond.php file. The following pipelines are automatically added:
affiche_gauche (p.131), affiche_droite (p.130) et affiche_milieu (p.133) by
passing the exec parameter name as a parameter:

echo pipeline('affiche_milieu', array('args' => array('exec'
=> $exec), 'data' => ''));

In addition, the private page title is calculated by extracting the contents of the
first HTML<h1> (or <hn>) tag that is found.

Example

The "Formidable" plugin uses SPIP templates to construct its pages for
the private zone. To display responses in a form, it uses the following
template code:

<BOUCLE_formulaire(FORMULAIRES){id_formulaire}>
<BOUCLE_autoriser(CONDITION) {si #AUTORISER{voir,
formulaires_reponse}}>

<!--#hierarchie-->
<ul id="chemin">
<1li>
<a href="#URL_ECRIRE{formulaires_tous}"
class="racine"><:formidable:formulaires_tous:>
</1i>
<Ti>

>
<a class="on"
href="[(#URL_ECRIRE{formulaires_voir}

191

http://trac.rezo.net/trac/spip/browser/spip/ecrire/exec/fond.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/exec/fond.php
http://www.php.net/array
http://www.php.net/array

|parametre_url{id_formulaire,
#ID_FORMULAIRE})]">#TITRE

</1i>

<!--/#hierarchie-->

<div class="fiche_objet">
<a href="[(#URL_ECRIRE{formulaires_voir}
|parametre_url{id_formulaire, #ID_FORMULAIRE})]"
class="1icone36" style="float:left;">
<img width="24" height="24" src="#CHEMIN{images/
formulaire-24.png}" />
<:retour:>

<:formidable:voir_reponses:>

<h1>#TITRE</h1>
<div class="nettoyeur"></div>
</div>

<INCLURE{fond=prive/Tliste/
formulaires_reponses}{id_formulaire}
{titre=<:formidable:reponses_liste_publie:>}{ajax} />

<!--#navigation-->
<div class="cadre infos cadre-info">
<div class="numero">
<:formidable:voir_numero:>
<p>#ID_FORMULAIRE</p>
</div>
<div class="hover">

[<img src="(#CHEMIN{images/formulaire-
reponses-24.png})" style="vertical-align:middle;" alt=""
/>]
<span style="vertical-
align:middle;"><:formidable:reponses_liste:>

</div>
<div>
<a href="[(#URL_ECRIRE{formulaires_analyse}

192

|parametre_url{id_formulaire,
#ID_FORMULAIRE})]" class="cellule-h">

[<img src="(#CHEMIN{images/formulaire-
analyse-24.png})" style="vertical-align:middle;" alt=""
/>]

<span style="vertical-
align:middle;"><:formidable:reponses_analyse:>

</div>

</div>
<!--/#navigation-->
</BOUCLE_autoriser>
</BOUCLE_formulaire>

Notes:

» All of this is included within a loop that checks for the existence of
the form: if the form does not exist, the template then returns nothing
and provides an error message instead.

* In the same manner, it is surrounded with an #AUTORISER (p.198)
test to check that the current person has the rights to see the
responses. In this case we use the CONDITION loop from the
"Bonux" plugin in order to be able to continue to read SPIP loops
that lie inside the condition.

* The <!--#hierarchie--> code section displays a suitable path
from amongst the private pages of the plugin.

The contents of a (PHP) exec file

In the absence of a prive/exec/name.html SPIP template file, a call from
the private zone to a 7exec=name page loads a exec_name_dist () function
in a exec/name. php code file.

Such functions are mostly broken down as follows: the call to the start of the
page, the declaration of a left column, a right column and a page centre. There
are some pipelines that exist so that plugins will be able to add data to these
page blocks.

Example of an empty "name" page

193

<?php
if (!defined("_ECRIRE_INC_VERSION")) return;
include_spip('inc/presentation');
function exec_nom_dist(){
// if not authorised: error message
if (lautoriser('voir', 'nom')) {
include_spip('inc/minipres"');
echo minipres();
exit;
}
// initialisation pipeline
pipeline('exec_init',
array('args'=>array('exec'=>"nom'), 'data'=>"'"'));
// headers
$commencer_page = charger_fonction('commencer_page',
'inc');
// titre, partie, sous_partie (pour le menu)
echo $commencer_page(_T('plugin:titre_nom'), "editer",

"editer");

// title

echo "

\n"; // outch ! aie aie aie ! au
secours !

echo gros_titre(_T('plugin:titre_nom'),'', false);

// left column

echo debut_gauche('', true);

echo pipeline('affiche_gauche',
array('args'=>array('exec'=>'nom'), 'data'=>""));

// right column

echo creer_colonne_droite('', true);

echo pipeline('affiche_droite',
array('args'=>array('exec'=>"nom'), 'data'=>"'"'));

// centre

echo debut_droite('", true);

// contents

// ...

echo "display whatever you want to here!";

/] ...

// end of contents

echo pipeline('affiche_milieu',
array('args'=>array('exec'=>"nom'), 'data'=>"'"'));

echo fin_gauche(), fin_page();

194

http://www.php.net/defined
http://www.php.net/exit
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

The information panel

To add a page description, or a description of the object/id_object currently
being shown, a type of insert panel has been envisaged: "boite_infos"
(info_box)

It is often used in a way to add a function into the left column:

// Teft column

echo debut_gauche('', true);

echo cadre_nom_infos();

echo pipeline('affiche_gauche',
array('args'=>array('exec'=>"nom'), 'data'=>"'"'));

This function calls the pipeline and returns its contents in a panel:

// display the page information
function cadre_champs_extras_infos() {
$boite = pipeline ('boite_infos', array('data' => '',
'args' => array(
'type'=>"nom',
// possibly the object's ID and the sSQL line
// $row = sql_fetsel('*', 'spip_nom',
'id_nom=".sql_quote($id_nom));
'id' => $id_nom,
"row' => $row,
)
));
if ($boite)
return debut_boite_info(true) . $boite .
fin_boite_info(true);

}

The pipeline automatically loads a template (with the context supplied by the
args array) of the same name to the "type" parameter in the prive/infos/
directory i.e. prive/infos/nom.html. It must then be created with the
desired content.

195

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://trac.rezo.net/trac/spip/browser/spip/prive/infos/

Functionalities

This chapter explains some of SPIP’s functionalities in further detail:
authorisations, actions, authentication, the cache, the compiler...

197

198

Authorisations

Two essential elements make it possible to manage access to SPIP’s actions
and pages: the authorisations with the fonction autoriser() function,
and actions secured by author with the fonction securiser_action()
function.

The "autoriser” library

SPIP has an extendable autoriser () function enabling the verification of
authorisations. This function accepts 5 arguments. Only the first is necessary,
and the others are all optional.

autoriser($faire, $type, $id, qui, Sopt);

The function returns true or false depending on the authorisation requested
and the user(editor) who is connected (or the requested user passed as an
explicit parameter). Here are what the different arguments are used for:

« $faire corresponds to the action requested. For example "modifier"
(modify) or "voir" (view),

» $type is generally used to define the object type, for example "auteur"
(author) or "article",

« $1idis used to provide the identifier of the requested object, for example
"8" as an article number,

+ $qui is used to enquire or assign authorisation for a specific author.
When not provided, it assumes the currently connected author. The
argument is typically an id_auteur number,

« $opt is an array of options, usually empty. When an authorisation
requires additional arguments to be passed, they are entered in this
array.

Example

if (autoriser('modifier','article',$id_article)) {
// ... actions

}

The #AUTORISER tag

The #AUTORISER tag is used to request authorisations within a template. The
existence of this tag, as with the existence of the #SESSION tag, creates a
template cache for each identified visitor and a single cache for all unidentified
visitors.

This tag accepts the same arguments as the autoriser () function.

Example

[(#AUTORISER{modifier,article,#ID_ARTICLE})
. actions

Processes in the autoriser() function
SPIP’s default authorisations are made using the ecrire/inc/autoriser.php file.

When SPIP is requested for an autoriser($faire, $type) type
authorisation, it goes to look for a function to handle this requested
authorisation. It looks for the named function in the following order:

- autoriser_$type_S$faire,

- autoriser_$type,

« autoriser_$faire,

* autoriser_defaut,

» and then the same list with the _d1i st suffix attached.

Example

autoriser('modifier', 'article',$id_article);

Will return the first function found and execute it. This being:

function autoriser_article_modifier_dist($faire, $type,
$id, $qui, $opt){

199

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/autoriser.php

200

The function is passed the same parameters as the autoriser()
function. Inside it, $qui is passed the current author if an author was not
passed as an argument in the call to autoriser().

Creating or overloading the authorisations
To create an authorisation, you only need to create the supporting functions.

function autoriser_documentation_troller_dist($faire, $type,
$id, qui, Sopt) {
return false; // no trolls permitted! and no exceptions!

}

Declaring this function makes it possible to use the
autoriser('troller', 'documentation') function or the
#AUTORISER{troller, documentation} tag.

New functions, but not everywhere!

The autoriser() function, when first called, loads a pipeline with the same
name. This call to the "autoriser" pipeline (p.139) is used to load the
authorisation files for a template directory or a plugin.

Example

In a template: In the config/mes_options.php file, we add the call to
a function for our authorisations:

<?php

$GLOBALS['spip_pipeline']['autoriser'] .=

"|my_authorisations";

function my_authorisations(){
include_spip('inc/my_authorisations');

3

?>

So then when the autoriser pipeline is called, it loads the inc/
my_authorisations.php file. We can then create this directory and
file, which contains the intended authorisation functions in its
squelettes/ directory.

In a plugin: For a plugin, it's almost exactly the same: you have to declare
the use of the pipeline inside your pTugin.xm1 :

<pipeline>
<nom>autoriser</nom>
<inclure>inc/prefixePlugin_autoriser.php</inclure>
</pipeline>

And create the file in question and absolutely make sure to add in the
pluginprefix_autoriser() function into the file that the pipeline
calls.

<?php
if (!defined("_ECRIRE_INC_VERSION")) return;
// function for the pipeline, nothing to do
function pluginprefix_autoriser(){}
// declarations of authorisations
function autoriser_documentation_troller_dist($faire,
$type, $id, $qui, $opt) {
return false; // no trolls permitted! and no
exceptions!

}

?>

Secured actions
Secured actions provide a method of ensuring that the requested action indeed
originates from the author who clicked or validated a form.

The autoriser() function does not provide this functionality. For example,
it can verify what type of author (administrator, editor) has the right to perform
which actions. But it can not verify which action has been effectively requested
by which individual.

201

http://www.php.net/defined

202

This is where secured actions are applied. What they do in fact, is make it
possible to create URLs for links or forms which pass a special key. This key
is generated based on several data: a random number generated on each
connection by an author and stored alongside the author’s personal data, the
author identifier, the name of the action and arguments of that action if there
are any.

Using this passed key, when the author clicks on the link or the form, the action
being called can confirm that it is actually the currently connected author who
has requested the action to be performed (and not some malicious individual or
robot executing an HTML query with stolen credentials!).

How secured actions work

Using secured actions is a 2-step process. You must first generate a link with
the security key, and then later verify that key when the user clicks on the action
that will execute a file function in the action/ directory.

The securiser_action() function

This securiser_action function, stored in the ecrire/inc/
securiser_action.php file, creates or verifies an action. During creation,
depending on the $mode argument, it will create a URL, a form or simply
return an array with the requested parameters and the generated key. During
verification, it compares the elements submitted with a GET (URL) or POST
(form) and kills the script with an error message and exii ts if the key does not
match the current author.

Generating a key
To generate a key, you need to call the function with the right parameters:

$securiser_action =
charger_fonction('securiser_action', 'inc');
$securiser_action($action, $arg, $redirect, $mode);

These four parameters are the main ones used:
+ $action is the name of the action file and the corresponding
action(action/name. php and the associated function
action_name_dist())

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/securiser_action.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/securiser_action.php

+ $argis a passed argument, for example supprimer/article/3 which
will be used, among other things, to generate the security key.

« $redirectis a URL for redirection after the action has been performed.
» $mode indicates what should be returned:

o false:a URL

o -1:an array of parameters

> a content text: a form to be submitted (the content is then added into

the form)

Inside an action, verifying and retrieving the argument

Within an action function (action_name_dist()), we verify the security key
by calling the function without an argument. It returns the argument (otherwise
displays an error and kills the script):

$securiser_action =
charger_fonction('securiser_action', 'inc');

$arg = $securiser_action();

// from here on, we know that the author is the right person!

Secured actions’ predefined functions

Secured actions are rarely directly generated by calling the
securiser_action() function, but more frequently by calling a function
which itself then calls the security function.

The ecrire/inc/actions.php file contains a large number of these functions.

generer_action_auteur()
In particular, the generer_action_auteur() function directly calls the
securiser_action function, passing a secured URL by default.

redirige_action_auteur()

This function takes two parameters instead of the 3rd redirection argument: the
name of an exec file, and the arguments to be passed. SPIP then creates the
redirection URL automatically.

redirige_action_post()
Same as the previous function except that it generates a POST form by default.

203

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/actions.php

Example
Generate a link to change the display preferences in the private area:

$url = generer_action_auteur('preferer',"display:1",
$self);

Run an action when editing a news item, then redirect to the news item
view.

$href =
redirige_action_auteur('editer_breve',$id_breve, 'breves_voir',
"id_breve=$id_breve");

Post a form, then redirect to the "admin_plugin" page. $corps contains
the contents of the form to activate a plugin.

echo redirige_action_post('activer_plugins', 'activer',
'admin_plugin',"'', $corps);

Action URLs in a template
The #URL_ACTION_AUTEUR tag is used to generate secured action URLs from

inside a template file.

#URL_ACTION_AUTEUR{action,argument,redirection}

Example

Deleting the forum comment requested if the author actually has the
(autoriser('configurer"') rights is certainly vague, but it is applied
in the private area in ecrire/exec/forum_admin.php]) !

[(#AUTORISER{configurer})

<a href="#URL_ACTION_AUTEUR{instituer_forum,#ID_FORUM-
off,#URL_ARTICLE}"><:supprimer:>

]

204

http://trac.rezo.net/trac/spip/browser/spip/ecrire/exec/forum_admin.php

Actions and processes
The ecrire/action/ directory is intended for handling the actions afffecting
the contents of the database . These actions are therefore mostly secured.

The contents of an action file

An action file provides at least one function matching its own filename. A
file called action/Taugh.php should therefore declare a function called
action_laugh_dist(Q).

<?php
if (!defined("_ECRIRE_INC_VERSION")) return;
function action_laugh_dist(){

}

?>

Operation of the function
In general, the main function is divided into 2 sections: verification of
authorisations, then execution of the requested process.

The verifications

The right author

Most SPIP actions only verify that the current author is indeed the same as the
one who clicked for the action. This is done with:

$securiser_action = charger_fonction('securiser_action',
"inc');
$arg = $securiser_action();

The security function kills the script if the current author is not the one
requesting the action, otherwise it will return the requested argument (in this
case through $arg).

The right argument

Then, generally speaking, the $arg variable received is verified to see if it
is conformant with what was expected. It often takes the form "id_object",
sometimes "object/id_object" or more complex ones like date elements:

205

http://www.php.net/defined

206

if (Ipreg_match(",A\w*(\d)\WQw*)$,", $arg, $r)) {
spip_log("action_dater_dist $arg pas compris");
return;

And authorisation

Some actions also verify that the author is actually approved to execute that
action (but in general, this authorisation has already been confirmed before: the
link that fires the action will not normally be visible if the author does not have
the appropriate rights). For example, checking to see if the current author has
the right to moderate the forum for the given article:

if (lautoriser('modererforum', 'article', $id_article))
return;

// which could also be written with a debug-type message:

if (lautoriser('modererforum', 'article', $id_article)) {

include_spip('inc/minipres');
minipres('Moderation',"You do not have the rights to

manage moderations on the forum for this article");
exit;

}

The processes

When all the verifications have been made, the processes are then executed.
Very often, these processes call functions that exist in the same file, or
functions in a library in the inc/ directory. Sometimes the action will be to
simply execute the file’s own main function.

Example of assigning moderation rights to an article

// Modifier le reglage des forums publics de 1'article x
// Modify the moderation rights for the public form on
article x
function action_regler_moderation_dist()
{

include_spip('inc/autoriser');

$securiser_action = charger_fonction('securiser_action',
'inc');

$arg = $securiser_action();

if (lpreg_match(",A\w*(\d+)$,", $arg, $r)) {

http://www.php.net/preg_match
http://www.php.net/exit
http://www.php.net/preg_match

spip_log("action_regler_moderation_dist $arg pas
compris™);
return;
}
$id_article = $r[1];
if (lautoriser('modererforum', 'article', $id_article))
return;
// traitements - processes
$statut = _request('change_accepter_forum');
sql_updateq("spip_articles", array("accepter_forum" =>
$statut), "id_article=". $id_article);
if ($statut == 'abo') {
ecrire_meta('accepter_visiteurs', 'oui');
}
include_spip('inc/invalideur');
suivre_invalideur("id="1id_forum/a$id_article'");

The processes executed modify the spip_articles table in the database
to assign a new management status for forum management. When a forum
is requested on subscription, which means you must be logged in to post, we
must absolutely be sure that the site actually accepts visitor registrations, which
is checked by calling ecrire_meta('accepter_visiteurs', 'oui');.

And finally, a call to invalidate the cached files is executed by calling the
suivre_invalideur () function. All of the cache will be recreated (note that
from SPIP 2.0 onwards, which was not the case previously, only the relevant
section of the cache was invalidated).

Automatic redirections

At the end of an action, after the return of the function, SPIP redirects the
page to a redirection URL passed in the redirect variable. The functions to
generate the links to the secured actions, like generer_action_auteur(),
have a parameter to receive this redirection link.

Forcing a redirection

Some actions, however, can force a different redirection, or define a default
redirection. To do this, you must call the redirige_par_entete() function,
which enables redirecting the browser to a different page.

207

http://www.php.net/array

208

Example:

Simply redirect to the redirection URL requested:

if ($redirect = _request('redirect')) {
include_spip('inc/headers');
redirige_par_entete($redirect);

editer_objet actions

Actions which write data have a special peculiarity. Called by forms that write
data for SPIP objects (in the prive/formulaires/ directory) from the ecrire/
inc/editer.php file, they do not receive redirection instructions and must return,

in such cases, a data pair of "identifier", "error". The (CVT) form process itself
manages the subsequent redirection.

For this reason, the action/editer_xx.php files, where xx is the object
type (in the singular), may return an array:

if ($redirect) {
include_spip('inc/headers');
redirige_par_entete($redirect);
} else {
return array($id_auteur,'');

}

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/editer.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/editer.php
http://www.php.net/array

Authentications

The auth directory contains the various scripts used to generate the user
connections. Added to the API available in the file ecrire/inc/auth.php, the
whole set can define new ways of authentication and user creation. SPIP
provides two ways of authentication:

* SPIP for an ordinary connection

« LDAP to connect users authenticated using such a directory

The contents of an auth file

The various authentication checks are called during login through the prive/
formulaires/login.php file. The first, which validates an authentication, makes
it possible to accommodate someone who is in the process of identifying
themselves.

The list of the various authentications is defined by a global variable:
$GLOBALS['Tiste_des_authentifications'].

Nonetheless, the authentication processes are relatively complex requiring
several safety checks. The user login and password are passed to the
verification functions (encrypted with sha56 paired with a random number - or
in the clear in the worst of cases when it is not possible to store cookies).

The primary identification function
A auth/nom. php file must have a auth_nom_dist () function. This function
returns a table describing the author if that author is authenticated.

if (!defined("_ECRIRE_INC_VERSION")) return;

// Authenticates and if ok, returns the array for the user's
SQL row

// If a security risk affects the installation, return False

function auth_spip_dist ($login, $pass, $md5pass="",
$md5next="") {

}

209

http://trac.rezo.net/trac/spip/browser/spip/prive/formulaires/login.php
http://trac.rezo.net/trac/spip/browser/spip/prive/formulaires/login.php
http://www.php.net/defined

The compiler

This section explains some of the details on how a template is compiled.

The syntax of the templates
SPIP uses a syntax to write templates which has a limited vocabulary but which
is also extremely rich and modular in nature. This syntax, defined explicitly in
the ecrire/public/phraser_html.php files, contains elements such as:

» the loop ("boucle" in French)

<B_loopname>
. before content
<BOUCLE_1loopname (TABLE) {criteria}>
. for each matching element
</BOUCLE_loopname>
. after content
</B_loopname>
. else content
<//B_loopname>

« the field or tag ("champ" and "balise" in French)

I [before (#TAG{criteria}|filters) after]

» the argument ({args}, |filter or |fiTlter{args} on tags)
« criteria ({criteria=param} used on loops)
« code inclusion

<INCLURE{fond=included_code_segment_name}>

» placeholders ("idiome" in French) (language specific character strings)

<:type:string_code_name:>

« polyglots ("polyglotte" in French) (<muTt1i> used throughout templates
and in user text)

<multi>[fr]francais[en]English</multi>

210

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/phraser_html.php

Analysing a template

When SPIP’s parser analyses a template, it translates the syntax into a
vocabulary known and understood by the compiler. We might then say that the
parser is translating a particular language (the SPIP syntax), that we refer to
as a "concrete syntax", into a precise language that we refer to as an "abstract
syntax". This is defined by PHP objects in the ecrire/puclic/interfaces.php file.

With this page analysis, the parser creates a table describing it, sequentially
and recursively, by using the vocabulary included by the compiler (the objects
containing Text, Fields, Loops, Criteria, Placeholders, Includes, Polyglots).

To make things a little clearer, let's look at what table is generated by a few
template examples.

A text
Template :

Simple text

Generated table: (output by a print_r)

array (

0 =>
Texte::__set_state(array(
'type' => 'texte',

"texte' => 'Simple text

'avant' => NULL,
'apres' = '',
'Tigne' => 1,

),

The table specifies that the first element read on the page (key 0) is a "Texte"
element, starting on line 1, and holding the text string "Simple text".

A tag
Template:

[before(#vAL)after]

2M

http://trac.rezo.net/trac/spip/browser/spip/ecrire/puclic/interfaces.php
http://www.php.net/array
http://www.php.net/array

212

We can read from the generated table below, that the first element read on the
page is a Field ("champ" in French) (a tag), that it's name is "VAL", that it is not
within a loop (otherwise the id_loop would be defined), and that what is in the
optional section before the tag is a "Texte" element with the text string being
"before".

Generated table:

array (
0 =>
Champ::__set_state(array(
'type' => 'champ',
'nom_champ' => 'VAL',
'nom_boucle' => "',
'avant' =>
array (
0 =
Texte::__set_state(array(
'type' => 'texte',
'texte' => 'before',
'avant' => NULL,

'apres' => s
'"Tigne' => 1,
)),
Do
'after' =>
array (
0 =>
Texte::__set_state(array(
'type' => 'texte',
'texte' => 'after',
'avant' => NULL,
'apres' => "',
'Tigne' => 1,
),
Dg
'etoile' = '',
'param' =>
array (
Do
'fonctions' =>
array (
Do

'id_boucTle' => NULL,

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

'boucles' => NULL,
'type_requete' => NULL,
'code' => NULL,
'interdire_scripts' => true,
'descr' =>

array (

Do
'Tigne' => 1,

D),

1 =
Texte::__set_state(array(
'type' => 'texte',

'texte' => '
'!
'avant' => NULL,
'apres' => "',
'Tigne' => 1,
),
)
A loop

Let’s look at one more example of a loop using a tag, which is a little more
complicated since it implies a circular reference in the generated table. Look at
this simple template segment:

Template:

<BOUCLE_a(ARTICLES) {id_article=3}>
#TITRE
</BOUCLE_a>

This loop selects article 3 and should display the title of the article. The page
table, if we were to try to display it, would end up generating a recursion error.
The illustration shows that the second element read in the loop is a Field
("champ" in French) or tag named "TITRE". This field contains a reference
to the loop which it is defined within ('boucles'=>array(...)). This loop
contains the tag which belongs to the loop containing the tag which belongs to
the loop ...

Excerpt of the generated table

array (

213

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

214

0 =
Boucle::__set_state(array(
'type' => 'boucle',

'id_boucle' => a',

'id_parent' => s
'avant' =>
array (
Do
'milieu' =>
array (
0 =>
Texte::__set_state(array(
'type' => 'texte',
'texte' => '

'avant' => NULL,
'apres' = '',
'"Tigne' => 1,

)),

1=

Champ::__set_state(array(
'type' => 'champ',
'nom_champ' => 'TITRE',
'nom_boucTle' => '",
'avant' => NULL,

'apres' => NULL,

'etoile' => "',
'param’' =>
array (
Do
'fonctions' =>
array (
Do

'id_boucle' => '_a',
'boucles’' =>
array (

_a' =
Boucle::__set_state(array(
"type' => 'boucle',

'id_boucle' => a',

'id_parent' => ,
'avant' =>

array (

e

'milieu’ =>

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

array (

0 =>
Texte::__set_state(array(
"type' => 'texte',

'texte' => '

'avant' => NULL,

'apres' => "',

'"ligne' => 1,
),

1 =
Champ::__set_state(array(

"type' => 'champ',
"nom_champ' => 'TITRE',
'nom_boucle' => "',
'avant' => NULL,
'apres' => NULL,

'etoile' => ,

'param' =>
array (
e

'fonctions' =>
array (
e

'id_boucle' => '_a',
'boucles' =>
array (

a =>

Boucle::__set_state(array(

Why use such references?

Quite simply because they are then used for calculating the tags. When a tag
is calculated, a part of this table is passed as a parameter (the famous $p
that we will meet often). This part simply relates to the tag’s properties. To
retrieve properties from the enclosing loop, all that is required (thanks to these
references) is to call the parameter $p->boucles[$p->id_boucTe].

The assembly processes
The production of a page by the compiler is performed in the ecrire/public/
assembler.php file.

215

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/assembler.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/assembler.php

216

This file calls functions to analyse what has been requested, retrieve the
modified template, translate it into PHP, and return the results of the PHP code
evaluations. And do all this whilst managing the various file caches.

SPIP generally uses the recuperer_fond() function to retrieve the result
of a template, but it also directly calls the assembler() function from the
ecrire/public.php file.

Function call sequence

The recuperer_fond() function calls evaluer_fond() which calls
inclure_page() which calls the cacher () function in the ecrire/public/
cacher.php file. This is the same cacher() function which also calls
assembler().

Determining the cache
The ecrire/public/cacher.php file is used for managing the files stored in the
cache.

The cacher () function retrieves the name and date of a cached page if it
exists, depending on the context that has been provided. If it is also passed a
file address, then the cache file is created.

As such, this function can be called in 2 ways:
 the first time to determine the name of the cache file and to indicate if a
valid cache exists for the requested page.
* asecond time when there is no valid cache. The page is then calculated
by the parametrer () function, and then the cacher () function is
called, this time to store the results in the cache.

// This function is used twice

$cacher = charger_fonction('cacher', 'public');

// The last four parameters are modified by the function:
// location, validity, and, if valid, contents & age
$res = $cacher($GLOBALS['contexte'], $use_cache,
$chemin_cache, $page, $lastmodified);

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/cacher.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/cacher.php
http://en.wikipedia.org/wiki/ecrire%2Fpublic%2Fcacher.php

Parameters determining the name of the

template

The ecrire/public/parametrer.php file makes it possible to create the
parameters which will be necessary to retrieve the name and details of the
template to be compiled using styliser(), and then request its calculation
using composer().

This is how the parametrer () function calculates the requested language as
well as the number of the current section (rubrique) if that is possible.

These parameters then enable the name and address corresponding to the
requested page to be determined. This is done by calling the styliser()
function which is passed the arguments in question.

Determining the template file
The ecrire/public/styliser.php file determines the name and type of the template
depending on the arguments which are passed to it.

$styliser = charger_fonction('styliser', 'public');

Tist($skel, $mime_type, $gram, $sourcefile) =
$styliser($fond, $id_rubrique_fond,

$GLOBALS['spip_lang'], $connect);

A 5th argument makes it possible to request a parser (a concrete syntax) and
then consequently an extension for the various template files. By default, the
parser (and therefore the extension applied) is htm1.

The function searches for a template named $fond.$ext in SPIP’s path.
If it does not exist, it returns an error, otherwise it atempts to find a more
specific template in the same directory as the template found, depending on
the id_rubrique and Tang parameters.

Styliser then searches files like nom=8.htm1, nom-8.htm1, nom-8.en.html
or nom.en.html in the following order:

« $fond=$id_rubrique

+ $fond-$id_rubrique

+ $fond-$id_rubrique_parent_recursivement

207

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/parametrer.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/styliser.php
http://www.php.net/list

218

» then whichever it has found (or not) terminated with . $Tang

The function then returns a table of elements of what it has found
array($squelette, $ext, $ext, "$squelette.$ext™) :

» 1st parameter: the name of the template,

* 2nd: its extension

» 3rd: its grammar (the type of parser)

e 4th: the full name.

These parameters are used by the composer and its composer () function.

A clean composition
The ecrire/public/composer.php file is intended to retrieve the template
translated into PHP and to execute it in the requested context.

If the template has already been translated into PHP, then the result is retrieved
from a cache file and used, otherwise SPIP calls its compilation function
compiler() to translate the concrete syntax into abstract syntax and then into
code that is executable by PHP.

The composer. php file also loads the functions necessary for executing the
PHP files output by the compilation of the templates.

The compilation
The SPIP compiler, in the ecrire/public/compiler.php file, is called using the
compiler() function from within the parametrer() function.

Compilation starts by calling the appropriate parser depending on the grammar
requested (the concrete syntax of the template). So it is the phraser_htm1 ()
parser which is called in the ecrire/public/phraser_html.php file. It transforms
the syntax of the template into a table ($boucTes) of lists of PHP objects
forming the concrete syntax that the compilation function will analyse.

For each loop found, SPIP performs a certain number of processes, starting
by looking for which SQL tables match and which joins have been declared for
these tables.

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/composer.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/compiler.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/phraser_html.php

It then calculates the criteria applied on the loops (declared in ecrire/public/
criteres.php or via plugins), and then the content of the loops (which have
tags defined for some of them in ecrire/public/balises.php). It then proceeds to
calculate the template elements that are outside of any loop.

Finally, it runs the loop functions that are dec-ared in the ecrire/public/
boucles.php file. The result of all this builds a PHP-coded executable with a
PHP function for each loop, and an overall PHP function for the whole template.

It is then this executable code which the compiler returns. This code will
be stored in the cache then executed by the composer with the contextual
parameters that have been passed. The result is the code for the requested
page, which will be stored in cache (by calling the cacher () function a second
time, in the assembTer. php file) and then sent out to the browser (or if it is
an inclusion, added to a page fragment). It may still contain PHP when certain
details must display depending on the person visiting the page, such as with
dynamic forms.

219

http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/criteres.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/criteres.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/balises.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/boucles.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/public/boucles.php

220

The cache

Using the various caches is an intrinsic component of SPIP that allows the
various pages to be generated faster for the site visitor, thereby improving site
response and performance. Any data that is frequently accessed, or which take
longer times to be processed, are kept at the ready so they do not need to be
generated "on the fly".

The template cache

There are various different caches used within SPIP, and others are also
provided with various plugins, such as "Mémoisation", "Fastcache", "Expresso"”
or "Cache Cool".

One of the most important caches is the one maintained for the templates:
whenever a template file is compiled, and the resultant PHP code generated,
then these results are stored in cache in the temp/cache/skel directory.
This cache is configured to have a validity period that is unlimited. Files in this
cache are only regenerated for each template file when:
 the original template file has been modified (which is based on the file’s
storage date on disk),
« either of the files mes_options.php or mes_fonctions.php have
been modified,
» the cache is emptied manually by an administrator.

The page cache

A second level of caching is maintained for pages requested by site visitors.
These page results are saved in a series of directories named tmp/cache/0
through tmp/cache/f and each cache file has its own validity period.

These cache files are created when:

 the validity period has expired and the page is requested anew (the
period is defined in the templates using the #CACHE tag, or absent such a
specific tag, through the system constant _DUREE_CACHE_DEFAUT),

« the editorial content in the database has been changed. SPIP relies on
the registered date of last modification to determine if this has happened:
($GLOBALS['meta']['derniere_modif']) as provided by the
function suivre_invalideur () de ecrire/inc/invalideur.php,

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/invalideur.php

» the parameter var_mode=calcul is explicitly passed to SPIP in the
URL, such as is the case when using the "Refresh this page" button on
the public site when you are currently logged in.

The SQL cache

SPIP stores certain database elements in a cache in order to prevent over-
working the SQL server, and so that the public pages already cached can be
displayed if the database server doesn’t work for some reason. There are two
such caches created for these purposes.

Cache of the meta data

The first cache is a complete export of the SQL table spip_meta. This
table stores the parameters used for configuring and running SPIP. These
data are stored both in the global variable $GLOBALS['meta'] and, except
for sensitive data used for authentication, in the file named tmp/
meta_cache.php. This file has a validity period defined by
_META_CACHE_TIME. It is rewritten when calls are made to ecrire_meta()
or effacer_meta(). The function 1ire_metas () recalculates the contents
of this cache $GLOBALS["meta'] using the current data in the database.

Cache of SQL descriptions

The second cache concerns the descriptions of the database SQL tables.
These descriptions are stored in the tmp/cache/sql_desc*.txt files,
along with a file for each database connector. This file is created and used by
the function base_trouver_table_dist(), which is used by various PHP
functions for SQL descriptions like table_objet(), id_table_objet(),
and objet_type().

To create this cache file, it is necessary to explicitly call the function
trouver_tabTle() without any arguments:

$trouver_table = charger_fonction('trouver_table', 'base');
$trouver_table();

221

222

The plugins cache
There are some cache files specific to plugins which are also created in tmp/
orin tmp/cache/.

plugin_xml.cache
The results from analysing the various pTugin.xmT files is stored in a cache
in the tmp/pTlugin_xml_cache.gz file.

This file is created when the list of active plugins is changed by the function
ecrire_plugin_actifs(Q), which calls the function
plugins_get_infos_dist() from ecrire/plugins/get_infos.php to manage
the retrieval of data for a plugin. The file can also be deleted, as for numerous
cache files when updates are made to the database structure.

Plugin load files
Plugins typically declare files for options, functions and actions to be executed
for pipeline calls. All of the files to be loaded are compiled into 3 files,
recalculated whenever the plugin management page is accessed at ecrire/
?exec=admin_plugin, when the cache is manually emptied, or when there
is an update to the database structure:
« tmp/cache/charger_plugins_options.php contains the list of
option files to be loaded,
* tmp/cache/charger_plugins_fonctions.php contains the list of
function files,
* tmp/cache/charger_plugins_pipelines.php contains those files
used for the functions to be executed for each pipeline.

The path cache

SPIP uses various folders to look for the files that it needs to operate. More
on this subject here: The concept of path (p.104). When it uses the function
find_in_path — a function which is essential for three other functions:
include_spip, charger_fonction, recuperer_fond, to look for a file to
be included by a template or if it uses the #CHEMIN tab —, then all of the paths
are searched through until the sought-after file is located. These numerous
searches create frequent, repetitive disk accesses which would be better to be
restricted in number if possible.

http://trac.rezo.net/trac/spip/browser/spip/ecrire/plugins/get_infos.php

For this reason, SPIP uses the tmp/cache/chemin. txt file to cache all of
the matches between a requested file and its actual logical location as found in
one of the path’s sequenced directories.

With this accomplished, whenever a file is requested, SPIP first checks to see if
the path for that file is in the cache. If it's not already there, then SPIP proceeds
to calculate its location and updates the correspondence table with a new entry
for the newly located file.

This cache file is recreated when calling with the var_mode=recalcul
parameter in the URL, or as a direct consequence of manually emptying the
cache in the administrative interface.

The CSS and JavaScript caches

The "Compresseur" extension in SPIP is used to compress the various CSS
and Javascript elements to restrict the number of calls to the server and the
size of the generated files.

This compression is active by default in the private zone, and can be
deactivated using the constant _INTERDIRE_COMPACTE_HEAD_ECRIRE.

define(' _INTERDIRE_COMPACTE_HEAD_ECRIRE', true);

This compression can be activated on the public zone depending on the
configuration selected. SPIP will create a compressed CSS file for each media
type (screen, print...), and a compressed JavaScript file for all of the external
scripts defined in the HEAD of the HTML page.

These files are cached in local/cache-js/ and local/cache-css/.
These caches are recalculated whenever the var_mode=recalcul
parameter is passed in the URL.

223

http://www.php.net/define

224

The image processing cache

SPIP has a library of graphical filters that are used by default to easily help
resize images. These functions are defined in detail in ecrire/inc/
filtres_images_mini.php. The "Filtres Images et Couleurs" extension, which is
active by default, offers numerous other filters as well, like creating text images
or using masks, merging images, colour manipulation, etc.

In order to avoid recalculating the same very time-consuming processes over
and over, SPIP stores the results of these kinds of processes in the Tocal/
cache-gd2 and Tocal/cache-vignettes directories.

These cached images will only be deleted when the image cache is manually
emptied from SPIP’s administration module, or when the parameter
var_mode=images is included in the URL.

Refreshing the cache

During normal usage of a SPIP site with public visitors and new articles being
published regularly, the cache and the updating of data is handled correctly.
By default (although some plugins are able to alter this behaviour), as soon
as SPIP becomes aware of changes to the editorial content in the database,
it invalidates the whole page cache. A requested page will then be calculated
again from before - or after if using the "Cache Cool" plugin - being served up
to the site visitor.

It is often necessary to manually empty the cache when making modifications
directly on content files, especially when updating a stylesheet or a JavaScript
script which is calculated by a SPIP template if the compression options have
been activated.

Remember that:

» var_mode=calcul in the URL updates the page’s cache

« var_mode=recalcul (for administrators) in the URL recompiles the
template and then updates the page cache.

 entering the plugin management page ecrire/?exec=admin_plugin
recalculates the cache files tmp/cache/charger_*.php for the
plugins, which may be lists of files for options, functions or pipelines.

» the browser has its own private cache, which may be for whole pages or
for AJAX elements. The site visitor and any administrator should also

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/filtres_images_mini.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/filtres_images_mini.php

think about emptying this cache - it is not necessarily SPIP which is
returning a particular unexpected result, as it may be the browser
returning data from its own cache. Various instructions for emptying a
browser’s local cache are specific to each browser and each platform -
please consult your appropriate user guide.

Configuring the cache
There are several parameters used to finely tune SPIP’s page cache.

Cache longevity

It is essentially a useless act to provide every SPIP template a specific cache
duration by using the #CACHE markup tag. This tag is, however, useful for
defining a validity duration that is different from SPIP’s default value. In
concrete terms, a piece of include code that lists news items from other
syndicated sites will benefit from being refreshed more regularly than the
default for the rest of the site, perhaps once every hour, for example.

In most cases, it’s better to use a longer cache duration by default, since SPIP
will automatically obsolete the cache when changes have been made to any
content.

The page cache is defined as 24 hours, which can be modified by changing the
constant _DUREE_CACHE_DEFAUT, as in this example where it is assigned to
one month (30 days):

define (' _DUREE_CACHE_DEFAUT', 24%3600%30);

Cache size

SPIP organises itself so that the cache does not exceed a certain
predetermined maximum size, set to 10 MB by default. The global variable
$GLOBALS['quota_cache'] is used to change this default value, as shown
in this example which sets the upper limit to 100 MB:

$GLOBALS['quota_cache'] = 100;

225

http://www.php.net/define

Cache validity

A final facility is provided for development or debugging reasons, which can
be used to modify the operation or usage of the cache. A constant named
_NO_CACHE is used for this purpose (or simply use the "NoCache" plugin):

// never use the cache

// and don't even create the cache files

define('_NO_CACHE', -1);

// do not use the cache file,

// but store the results of the calculation in the file cache
define('_NO_CACHE', 1);

// always use the cache files if they exist

// if they don't, then calculate them

define('_NO_CACHE', 0);

226

http://www.php.net/define
http://www.php.net/define
http://www.php.net/define

Periodic tasks (cron)

The genie directory, French for wizard among other things, is used to store the
periodic tasks, more generally referred to as cron tasks.

How cron jObS are run

It must be stressed that such cron jobs will not run at all if no-one ever visits
the pages that have the #SPIP_CRON tag embedded - they are not cron jobs
scheduled on the server, as might be assumed, they are simply procedures
that are run intermittently and triggered by the activity of visits to the website
pages themselves.

The tasks to be executed are called each time a site visitor views the page.
A visitor's viewing of a page only executes a single cron task for each page
called, if there is actually one to be processed.

However, for tasks to be called, the #SPIP_CRON tag must be present in
the page template. This tag returns an empty image, but will run the task
processing script. A text browser also runs the periodic tasks if the tag is not
present.

To call the cron, you only need to execute the cron() function. This function
takes an argument specifying the number of seconds which must elapse before
another task can be launched, 60 seconds by default. Calls using #SPIP_CRON
are applied every 2 seconds with the following code:

cron(2);

Declaring a cron task
To declare a task, you need to specify its name and frequency in seconds using
the taches_generales_cron pipeline:

function myplugin_general_cron_jobs ($taches) {
$taches['nom'] = 24*3600; // once per day, every day
3

227

228

This task will be called at the appropriate time. The processes are placed in a
file in the genie/ directory, with the same name as the (name. php) task and
including a genie_name_d1ist () function.

The function is passed the date at which it last performed that task as an
argument. It must return a number:

null, if the task has nothing to do

positive, if the task has been run

negative, if the task started but could not complete. This makes it possible
to run tasks in batches (to avoid timeouts on PHP script executions
because the processes run too long). In such cases, the negative number
indicated corresponds to the number of seconds of interval before the
next scheduled task run.

Example

This example is simple, originating from SPIP’s "maintenance" tasks in the
genie/maintenance.php file, since it executes functions and always
returns 1, indicating that the action has been run.

// Vvarious maintenance tasks
function genie_maintenance_dist ($t) {
// (re)set .htaccess with deny from all
// for the two nominated directories inaccessible
through http
include_spip('inc/acces');
verifier_htaccess(_DIR_ETC);
verifier_htaccess(_DIR_TMP);
// Confirm that neither table crashed
if (!_request('reinstall'))
verifier_crash_tables();
return 1;

X

Forms

SPIP provides a simple and powerful process to manage forms, called
CVT (Charger, Vérifier, Traiter i.e. Load, Verify, Process). It breaks
down a form into four parts:
» aview, which is basically a SPIP template containing the HTML
code of the form corresponding to formulaires/{nom}.html,
» and three PHP functions to load the form’s variables, verify the
submitted elements and process the form declared in the
formulaires/{nom}.php file.

229

230

HTML structure

Forms are stored in the formulaires/ directory. A special HTML syntax
allows easy customisation and reuse of forms.

Displaying the form
A file formulaires/joli.html is called from a template file using the
syntax #FORMULAIRE_JOLI, which then calls and displays the form.

The HTML of the form follows a standard format for all SPIP forms. The fields
of the form are surrounded in a list of elements using u1/1i HTML markup.

<div class="formulaire_spip formulaire_demo">
<form action="#ENv{action}" method="post"><div>
#ACTION_FORMULAIRE{#ENV{action}}

<1i class="editer_la_demo obligatoire">
<label for="Ta_demo">La demo</label>
<input type='text' name='Tla_demo' id='Tla_demo'
value="#ENV{la_demo}" class="text" />
</1i>

<p class="boutons"><input type="submit" class="submit"
value="<:pass_ok:>" /></p>
</div></form>
</div>

For the form to work properly, the action attribute must be provided by
the #ENvV{action} variable which is automatically calculated by SPIP. In
the same fashion, the #ACTION_FORMULAIRE{#ENV{action}} tag must be
present, as it calculates and adds the security key which will be automatically
verified when the form is received.

A few comments: The form is surrounded by a CSS class called
formulaire_spip and by a second with its own name, in this case
formulaire_demo. The name can be recovered more easily using the
context function: #ENV{form} (or directly with ##ORM), which could generate:
<div class="formulaire_spip formulaire_#FORM">. The <1i>
mark-up tags are assigned CSS classes of editer_xx, where xx is the field

name, and possibly the ob11igatoire class to indicate (visually) that this field
must be provided before submitting the form.

* The input tags are assigned a CSS class appropriate to the each field
type (to remediate a deficiency in Internet Explorer with CSS that does
not understand input[type=text])

+ The submission buttons are framed with a CSS class of boutons

Easily employing AJAX

Surrounding the form’s tag with an "ajax" CSS class tells SPIP to use AJAX,
thereby making it possible to reload only the form and not the whole page.

<div class="ajax">
#FORMULAIRE_JOLI
</div>

Handling errors returned

The verifier() function of the form can return errors if the submitted field
contents are not correct; which we will see in more detail later. To display these
errors in the form’s HTML, there are CSS classes and a naming system which
are employed:

At the top of the form there are general errors (or success messages):

[<p class="reponse_formulaire
reponse_formulaire_erreur">(#ENV*{message_erreur})</p>]
[<p class="reponse_formulaire
reponse_formulaire_ok">(#ENV*{message_ok})</p>]

For each field, there is a message and a CSS class on the list item to visually
tag the error. The field message is calculated using the #ENV{erreurs}
variable which provides all the field errors:

#SET{erreurs,#ENV**{erreurs}|table_valeur{xxx}}
<1i class="editer_xxx obligatoire[
(#GET{erreurs}|oui)erreur]">

[(#GET{erreurs})]
</Ti>

231

This combines with the previous form to give:

<div class="formulaire_spip formulaire_demo">
[<p class="reponse_formulaire
reponse_formulaire_erreur">(#ENV*{message_erreur})</p>]
[<p class="reponse_formulaire
reponse_formulaire_ok">(#ENV*{message_ok})</p>]
<form action="#ENv{action}" method="post"><div>
#ACTION_FORMULAIRE{#ENV{action}}

#SET{erreurs,#ENV**{erreurs}|table_valeur{la_demo}}
<1i class="editer_la_demo obligatoire[
(#GET{erreurs}|oui)erreur]">
<label for="1a_demo">La demo</label>
[(#GET{erreurs})]
<input type='text' name='la_demo' id='la_demo'
value="#ENV{la_demo}" />
</1i>

<p class="boutons"><input type="submit" class="submit"
value="<:pass_ok:>" /></p>
</div></form>

Field separation using fieldset
When a form contains a large number of fields, they are generally broken up
into various blocks, each known as a fieldset in HTML.

Such blocks of fields are sequenced into u1/11 type lists:

[...]
<form method="post" action="#ENv{action}"><div>
#ACTION_FORMULAIRE{#ENV{action}}

<1i class="fieldset">
<fieldset>
<h3 class="1egend">Section A</h3>

<Ti> ... </Ti>
 ... </Ti>

232

</fieldset>
</1i>
<1i class="fieldset">
<fieldset>
<h3 class="1egend">Section B</h3>

<Ti> ... </Ti>
 ... </Ti>

</fieldset>
</1i>

<p class="boutons"><input type="submit" class="submit"
value="<:pass_ok:>" /></p>
</div></form>

This example shows that you can have embedded lists, with the first <1i>
having the CSS class of "fieldset". Instead of providing HTML <1egend> tags,
a different format is provided using <h3 class="1egend">, which offers a

lot more opportunity for CSS tag styling.

Radio and checkbox fields

To display element lists of radio or checkbox controls, the syntax provided
for wrapping the elements uses a <div class="choix"></div>. This
formatting makes it possible to have buttons display before the labels, or to

provide a horizontal radio list (using CSS statements).

<1i class="editer_syndication">
<div class="choix">
<input type='radio' class="radio" name='syndication'
value="non' id='syndication_non'[
(#ENV{syndication}|=={non}|oui)checked="checked"] />
<label
for="syndication_non'><:bouton_radio_non_syndication:></Tlabel>
</div>
<div class="choix">
<input type='radio' class="radio" name='syndication'
value="oui' id="syndication_oui'[
(#ENV{syndication}|=={oui}|oui)checked="checked"] />

233

234

<label
for="syndication_oui'><:bouton_radio_syndication:></Tabel>
</div>
</1i>

To make the list display in horizontal mode using CSS, just make the "choix"
divs display as inTine:

.formulaire_spip .editer_syndication .choix {display:inline;}

Explaining input fields
It is often necessary to provide an explanation so that the user knows how to
correctly fill out particular fields in a form. SPIP offers 2 formats to do this, by
inserting a <p> or tag with a special CSS class:
» explication (on a <p> element) is used to provide a more detailed
explanation than the label of the field in question
» attention (on an element) highlights a description that has been
provided. To be used with moderation!

These two descriptions are therefore additional to the other options already
provided for an erreur (error) or an ob1igatoire (mandatory) field.

Example

#SET{erreurs,#ENV**{erreurs}|table_valeur{nom}}
<11 class="editer_nom obligatoire[
(#GET{erreurs}|oui)erreur]">
<label
for="nom"><:titre_cadre_signature_obligatoire:></label>
[(#GET{erreurs})]
<p class="explication'><:entree_nom_pseudo:></p>
<input type='text' class='text' name='nom' id='nom'
value="[(#ENV**{nom})]" />
</Ti>

Conditional displays

The charger() or traiter() functions can indicate if the form is editable
or not in their responses. This provides a means of receiving an editable
parameter in the template, which can be used to hide or display the form as
desired (but not the error or success messages).

It is used like this [(#ENV{editable}) ... contents of the <form>
]1:

<div class="formulaire_spip formulaire_demo">
[<p class="reponse_formulaire
reponse_formulaire_ok">(#ENV*{message_ok})</p>]
[<p class="reponse_formulaire
reponse_formulaire_erreur">(#ENV*{message_erreur})</p>]
[(#ENvV{editable})
<form method="post' action="#ENv{action}'><div>
#ACTION_FORMULAIRE{#ENv{action}}

<p class="boutons'><input type='submit'
class="submit' value='<:bouton_enregistrer:>' /></p>
</div></form>

]

</div>

For any loops in the form

If there is a SPIP loop inside the code [(#ENV{editable}) ...] (orany
other tag), the SPIP compiler returns an error (or incorrectly displays the page)
since this feature has not been envisaged in the current version of the template
language.

To remediate this, you need to either:
* put the loop in an include, and then call it using an
<INCLURE{fond=mon/inclusion} />
» or use the Bonux plugin and its CONDITION loop as follows:

<div class="formulaire_spip formulaire_demo">

[<p class="reponse_formulaire
reponse_formulaire_ok">(#ENV*{message_ok})</p>]

[<p class="reponse_formulaire
reponse_formulaire_erreur">(#ENV*{message_erreur})</p>]

235

236

<BOUCLE_editabTe(CONDITION) {si #ENv{editable}}>
<form method="post' action='#ENV{action}'><div>
#ACTION_FORMULAIRE{#ENV{action}}

<p class="'boutons'><input type='submit'
class="submit' value='<:bouton_enregistrer:>"' /></p>
</div></form>
</BOUCLE_editable>
</div>

PHP processing
The formulaires/{nom}.php files contain the three core functions related
to the CVT forms in SPIP:

+ formulaires_{nom}_charger_dist (loading),

« formulaires_{nom}_verifier_dist (verifying), and

e formulaires_{nom}_traiter_dist (processing).

Passing arguments to the CVT functions
The charger(), verifier() and traiter() functions do not receive any
parameters by default.

function formulaires_x_charger_dist(){..}
function formulaires_x_verifier_dist(){..}
function formulaires_x_traiter_dist(){..}

For these functions to receive parameters, they need to be submitted as
arguments explicitly when calling the form.

#FORMULAIRE_X{argument, argument, ..}

The PHP functions receive the parameters in the same order:

function formulaires_x_charger_dist($argl, $arg2, .){..}
function formulaires_x_verifier_dist($argl, $arg2, .){.}
function formulaires_x_traiter_dist($argl, $arg2, .){..}

Note that there is a supplementary possibility to use the functions for dynamic
tags, which make it possible to pass parameters automatically.

Example

The "Composition" plugin contains a form which requires a type and an
identifier. It is called as follows:

[(#FORMULAIRE_EDITER_COMPOSITION_OBJET{#ENV{type},
#ENV{id}})]

237

238

The processing functions therefore receive these two parameters:

function
formulaires_editer_composition_objet_charger($type,
$id){..}

Loading values into the forms

The charger () function makes it possible to specify which fields should be
retrieved when the form is submitted, and also makes it possible to define the
default values for such fields.

This function quite simply returns a paired table of "field name" / "default value"
pairs:

function formulaire_nom_charger_dist() {
$valeurs = array(
"field" => "default value",
"another field" => "",
E

return $valeurs;

All the keys specified will be passed into the form’s HTML template
environment. These data are then retrieved using #ENV{field} references.
As soon as the form is posted, it will be the values entered by the user which
take priority over the default values.

There is no need to protect the system from values entered that contain
quotation marks, as SPIP already takes care of these automatically.
Nonetheless, fields starting with an underscore "_" are not subject to this
automatic processing, which makes them useful for passing complex variables.

Authorise the display or hiding of a form
Forms are displayed by default, but it is possible to restrict this display
depending on certain assigned authorising data.

http://www.php.net/array

Two possibilities exist:
« either you don’t want to display the formula at all, so then return a false

function formulaire_nom_charger_dist() {
$valeurs = array();
if (lautoriser("webmestre")) {
return false;
}

return $valeurs;

« or simple hide a part of the form (often the editable part) by using the
"editable" variable, which is then handled in the form template:

function formulaire_nom_charger_dist() {
$valeurs = array();
if (lautoriser("webmestre")) {
$valeurs['editable'] = false;
}

return $valeurs;

Example

The "Acces restreint" (limited access) plugin has a form for assigning
zones to an author; it passes the fields to be retrieved and their default
values into the environment: the zone identifier, the connected author, and
the author to be assigned to the zone. In addition, if the author does not
have adequate rights, the "editable" variable is passed as false.

function
formulaires_affecter_zones_charger_dist($id_auteur){
$valeurs = array(
'zone'=>"",
'id_auteur'=>$id_auteur,
'id'=>$id_auteur
Dk
include_spip('inc/autoriser');
if (lautoriser('affecterzones', 'auteur',$id_auteur)){
$valeurs|['editable'] = false;

}

239

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

240

return $valeurs;

Other preloading options
Various other special parameters can be sent to the form when it is loaded to
modify its original behaviour:

message_ok, message_erreur

The success message is generally supplied by the traiter function; the error
message is supplied by the verifier or traiter functions. It is nonetheless
possible to supply them using the charger function in exceptional
circumstances.

action

This value specifies the URL to which the form is posted. By default, it is the
same URL as the current page, which makes it possible to redisplay the form if
errors are detected. For other very special use cases, this URL can be altered.

_forcer_request

When a form is submitted, SPIP identifies it so as to be able to have several
forms of the same type on a single page, and to only process the one that has
been submitted. This verification is based on the list of arguments passed to
the #FORMULAIRE_XXX tag.

In some cases where these arguments change after data entry, SPIP can make
a mistake and assume that the data comes from another form.

Sending _forcer_request as true indicates to SPIP that it should not
perform this verification and ought to process the entry data in every
circumstance.

_action

If the processing of the form must call a directory function actions/ protected
by securiser_action(), itis useful to specify the name of the action so that
SPIP automatically supplies the corresponding protection hash.

_hidden
The value of this field will be added directly to the HTML of the generated form.
it is often used to add "hidden" type input fields which should be written out
explicitly:

$valeurs['_hidden'] = "<input type='hidden' name='secret'
value="'shhhhh !' />";

Pipelines used for loading

formulaire_charger

This pipeline makes it possible to modify the table of values returned by the
charger function for a form. It is more fully described in the chapter about
pipelines: formulaire_charger (p.160)

parameétre _pipeline

This parameter makes it possible to modify the HTML code published by
making it pass through a specific pipeline. This data, sent in the loading table,
makes it possible to specify the name of a pipeline and the arguments to be
passed to it. It will be called at the time the form text is displayed.

Example

SPIP uses the parameter in a generic fashion by making all publication
forms that call the formuTlaires_editer_objet_charger() function
pass through a pipeline named editer_contenu_objet. This pipeline
is described in its own special article: editer_contenu_objet (p.159).

$contexte['_pipeline'] = array('editer_contenu_objet',
array('type'=>$type, 'id'=>$%id));

The CFG plugin uses this parameter to make all the CFG forms written
as CVT forms pass through the editer_contenu_formulaire_cfg
pipeline.

$valeurs['_pipeline'] =
array('editer_contenu_formulaire_cfg',

24

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

242

‘args'=>array(
"nom'=>$form,
'contexte'=>$valeurs,
'ajouter'=>$config->param['inline'])

b

The pipeline that CFG then uses to collect the contents not necessary in
the transmitted HTML.:

// pipeline for the display of content

// to delete the CFG parameters from the form

function cfg_editer_contenu_formulaire_cfg($flux){
$flux['data'] = preg_replace('/(<!-- ([a-

z0-9_1\w+) (*)?=) (. *?)-->/sim', '', $flux['data']);
$flux['data'] .= $flux['args']['ajouter'];
return $flux;

Checking the submitted values

The verifier() function is used to analyse the values posted and return
errors that may exist concerning the data entered. To do this, the function
returns a paired "field" / "error message" array of the offending fields, and
also possibly a general message for the whole of the form using the
"message_erreur" key.

The form processing function will be called on ONLY if the table returned is
empty. If it is not, the form is redisplayed with the various error messages that
have been passed.

function formulaire_nom_verifier_dist() {
$erreurs = array();
foreach(array('titre', 'texte') as $champ) {
if (!_request($champ)) {

$erreurs[$champ] = "This data is mandatory!";
}
}
if (count($erreurs)) {
$erreurs|['message_erreur'] = "An error occured in

your data entry";

http://www.php.net/preg_replace
http://www.php.net/array
http://www.php.net/array
http://www.php.net/count

}

return S$erreurs ’

The formulaire_verifier (p.162) pipeline is used to supplement the list of
returned errors.

Example

The "Amis" (Friends) plugin has a form for inviting people to become your
friend! The verifier() function checks that the mail address of the
person being invited is correctly formatted:

function formulaires_inviter_ami_verifier_dist(){
$erreurs = array();
foreach(array('email') as $obli)
if (!_request($obli))
$erreurs[$obli] =
(isset($erreurs[$obli])?$erreurs[$obli]l:"")
_T('formulaires:info_obligatoire_rappel');
if ($e=_request('email')){
if (lemail_valide($e))
$erreurs['email'] =
(isset($erreurs['email'])?$erreurs['email']:"") .
_T('formuTaires:email_invalide');
}

return $erreurs;

Executing the processes

Whenever the verification function (p.242) doesn’t return an error, the form then
moves on to the traiter() (processing) function. It is in this function that the
desired operations should be performed with the data from the form (send an
email, update the database, etc.).

The function must return an associative table:

function formulaires_nom_traiter(){

243

http://www.php.net/array
http://www.php.net/array
http://www.php.net/isset
http://www.php.net/isset

e

// Execute the processes

// Return values

return array(
'message_ok' => 'Excellent !', // or perhaps
'message_erreur' => 'Sorry, an error has occurred.'

DE

Important values
Here are some of the values frequently returned:

* message_ok is used to return a pleasant message to the user indicating
that everything processed normally.

* message_erreur, on the other hand, is used to return an error message
when the processing didn’t work correctly.

» editable, as for loading, this is used to display or hide the editable portion
of the form. By default it is set to false, but you may assign it a value of
true if your form can be used several times in a row.

» redirect is a URL which is used to tell SPIP which page it should redirect
to after processing the form. By default, the page will loop back to itself.

The formulaire_traiter (form_process) pipeline

Once the formulaires_nom_traiter function has completed, the
formulaire_traiter (p.161) pipeline is executed, thereby enabling other plugins
to complete the processes for this form.

Processing without AJAX

If a form is called using AJAX but then redirects to another page after finishing
its processes, this would require Javascript tricks (managed by SPIP) to
capture that redirection and effectively send the browser to another URL
instead of the normal response.

Whenever a redirection is certain, it is possible to prevent AJAX for the form’s
processing, while still maintaining it for the verification phase. This means that
the form would be reloaded in the event of an error in verifier (), but if the
processing is executed, then the whole page will be immediately reloaded.

http://www.php.net/array

To do this, you must call the
refuser_traiter_formulaire_ajax()function right at the start of the
processes:

function formulaires_nom_traiter(){

// Prevent AJAX processing since we know that the form
will redirect elsewhere

refuser_traiter_formulaire_ajax();

// Execute the processes

// Return values
return array(
'redirect' => 'Another URL'

DE

245

http://www.php.net/array

246

Examples

Management of the CVT forms deserves some dedicated examples of its own.

Translate anything

This simple example will create a small form that calls an external translation
service to translate the content entered on that form. The result will be

displayed underneath the source text that was entered.

The form will be called "translate_anything" and can then be called in a regular
SPIP template file using the tag #FORMULATIRE_TRANSLATE_ANYTHING or

within an article by using <formuTaire|translate_anything>.

As with most CVT forms, it operates using two files:
« formulaires/translate_anything.html for the HTML section
- formulaires/translate_anything.php for the PHP analysis and
processing functions.

The HTML template

The template for the form will receive two data entry fields of the textarea
type: the first for writing the content to be translated, and the second to display
the results of the translation once the calculation has been performed. This

second field is only displayed when it actually has some content.

<div class="formulaire_spip formulaire_#FORM">
[<p class="reponse_formulaire
reponse_formulaire_erreur">(#ENV*{message_erreur})</p>]
[<p class="reponse_formulaire
reponse_formulaire_ok">(#ENV*{message_ok})</p>]
<form action="#ENv{action}" method="post"><div>
#ACTION_FORMULAIRE{#ENv{action}}

[(#SET{erreurs, [(#ENV**{erreurs}|table_valeur{traduire})]1})]
<1i class="editer_traduire obligatoire[
(#GET{erreurs}|oui)erreur]">
<label for="traduire">Source text</label>
[<span

class="erreur_message'>(#GET{erreurs})]

<textarea name='traduire'
id="champ_traduire'>#ENV{traduire}</textarea>
</Ti>
[

[(#sET{erreurs, [(#ENV**{erreurs}|table_valeur{traduction})]})]
<1i class="editer_traduction[
(#GET{erreurs}|oui)erreur]">
<label for="traduction">Translated text</Tabel>
[(#GET{erreurs})]
<textarea name='traduction'
id="champ_traduction'>(#ENV{traduction})</textarea>
</1i>
]

<p class="boutons"><input type="submit" class="submit"
value="Translate" /></p>
</div></form>
</div>

The two fields named "traduire" and "traduction" (source and destination for the
translation). The same template could be written using the "Saisies" plugin with
the content between <uT1> and represented as follows:

[(#sAISIE{textarea, traduire, obligatoire=oui,
Tlabel=Traduire})]

[(#ENV{traduction}|oui)
[(#sSA1SIE{textarea, traduction, Tabel=Traduction})]
]

Loading, verifying and processing

The ‘"loading" of the form, declared in the formulaires/
translate_anything.php file, must specify that is is adding the two
"traduire" and "traduction" fields into the template’s context:

function formulaires_translate_anything_charger_dist() {
$contexte = array(

'"traduire' => s

247

http://www.php.net/array

248

"traduction' => ,
Dk
return $contexte;

The "verify" function simply needs to test if there has actually been some
content entered into the "traduire" field and return an error is there hasn't:

function formulaires_translate_anything_verifier_dist() {
$erreurs = array();
if (!_request('traduire')) {
$erreurs['message_erreur'] = "You have not entered
any text to translate - is your keyboard broken?";
$erreurs['traduire'] = "Normally that is how you
enter text, isn't it?";
b

return S$erreurs;

It is with the "process" function that things now get a little complicated. The
content needs to be sent to a remote service (we use Google Translate in this
example), the return data retrieved and processed, and then displayed on our
form.

To do all this, the script starts by calculating the URL for the remote service
based on that service’s published API. We use SPIP’s parametre_url PHP
function to cleanly add the variables to the service’s URL. Thanks to another
function, recuperer_page which is used to retrieve the code returned by a
call to an URL, the service’s returned data is stored in the $trad variable.

The service returns the data formatted in JSON format, so it must be extricated
using the json_decode function. depending on the information returned, the
translation will be determined as having been successful or not. The message
is adapted depending on this outcome.

// http://ajax.googleapis.com/ajax/services/language/
translate?v=1.0&q=helT0%20world&langpair=en%7Cit
define('URL_GOOGLE_TRANSLATE', "http://ajax.googleapis.com/
ajax/services/language/translate");
function formulaires_translate_anything_traiter_dist() {

// create the google api URL

http://www.php.net/array
http://www.php.net/define

$texte = _request('traduire');
$url = parametre_url(URL_GOOGLE_TRANSLATE, 'v', '1.0'",
'&');
$url = parametre_url($url, 'langpair', 'frlen', '&');
$url parametre_url($url, 'q', $texte, '&');
// load the text as translated by google (returned as
JSON code)
include_spip('inc/distant');
$trad = recuperer_page($url);
// warning: uses PHP 5.2
$trad = json_decode($trad, true); // true = retour array
et non classe
// retrieve the results if 0K
if ($trad['responseStatus'] != 200) {
set_request('traduction', '');
return array(
"editable" => true,
"message_erreur" => "Bad luck, Google couldn't

help!"
M
}
// send the data to be loaded
set_request('traduction’',
$trad['responsebata']['translatedText']);
// message
return array(
"editable" => true,
"message_ok" => "And here's the translation!",

DE

The set_request() functions forces the saving of a variable value that can
then later be retrieved using _request (). This allows the next loading of the
form to retrieve the value of the "traduction" field to send it into the template’s

context.

Note: It is possible that a cleaner method could be developed for future
versions of SPIP in order to transit the data between the processing and

loading phases using a new parameter in the processing return table.

249

http://www.php.net/json_decode
http://www.php.net/array
http://www.php.net/array

250

Calculating the day-of-the-year
This short example makes it possible to calculate and display the day of the
year for a date entered on a form.

This form will be named "calculate_doy", and can then be called from within a
SPIP template file with #FORMULAIRE_CALCULATE_DOY or within the text of

an article by using <formulaire|calculate_doy>.

Implementation
The two files necessary will be created as follows:
« formulaires/calculate_doy.html for the HTML section
« formulaires/calculate_doy.php for the PHP analysis and
processing the CVT functions.

The HTML template file
The formuTlaires/calculate_doy.html file contains the following code,
respecting the recommended HTML structure and CSS classes:

<div class="formulaire_spip formulaire_#FORM">
[<p class="reponse_formulaire
reponse_formulaire_ok">(#ENV*{message_ok})</p>]
[<p class="reponse_formulaire
reponse_formulaire_erreur">(#ENV*{message_erreur})</p>]
[(#ENV{editable}|oui)
<form name="formulaire_#FORM" action="#ENv{action}"
method="post"><div>
#ACTION_FORMULAIRE{#ENV{action}}

<1i class="editer_date_jour obligatoire[
(#ENV**{erreurs}|table_valeur{message}|oui)erreur]">
<label for="champ_date_jour">Date (dd/mm/yyyy)
:</label>
[(#ENV**{erreurs}|table_valeur{message})]
<input type="text" id="champ_date_jour"
name="date_jour" value="[(#ENv{date_jour})]" />
</Ti>

<p class="boutons">
<input type="submit" name="ok" value="cCalculate" />
</p>
</div></form>

]

</div>

Note that the "Saisies" plugin can be used to write the form’s fields using a
#SAISIE tag, and specifying the type and name of the variable used, followed
by whichever optional parameters are useful. Doing so would produce (the
code section between and):

[(#sSAISIE{input, date_jour, obligatoire=oui, label="Date (dd/

mm/yyyy) :"})]

Loading, verifying and processing
The formuTlaires/calculate_doy.php file contains the three following
functions:

The "loading" file lists the variables which will be passed into the template
environment and initialises their default values. There is no default date here,
but it would be possible to specify one if you wanted.

function formulaires_calculate_doy_charger_dist (){
$valeurs = array(
'date_jour' => "'

Dk

return $valeurs;

The "verify" function checks to make sure the compulsory fields are entered
and that the date format appears to be correct:

function formulaires_calculate_doy_verifier_dist (){

$erreurs = array();

// compulsory fields

foreach(array ('date_jour') as $obligatoire) {

if (!_request($obligatoire)) S$erreurs[$obligatoire] =

'This field is compulsory';

3

// correct date format

if (!isset($erreurs['date_jour'])) {

251

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/isset

252

Tist($jour, $mois,U $annee) = explode('/",
_request('date_jour'));

if (!intval($jour) or !intval($mois) or
lintval($annee)) {

$erreurs['date_jour'] = "Unknown date format.";
}
}
if (count($erreurs)) {
$erreurs|['message_erreur'] = 'Your data contains
errors!';
}

return S$erreurs ;

If the verifications are correct (no errors found), then the "process" function is
executed. The form is declared as re-editable, which means that a new date
value can be entered again immediately after the validation.

function formulaires_calculate_doy_traiter_dist (){
$date_jour = _request('date_jour');
$retour = array('editable' => true);
if ($doy = calculate_doy($date_jour)) {

$retour['message_ok'] = "The day of the year for
$date_jour is $doy";
} else {
$retour['message_erreur'] = "DOY calculation error!";

3

return $retour;

Of course, this still omits the function used to calculate the day-of-the-year, but
a few simple lines of PHP will fix that. This function can be implemented in the
same file as the three previous functions:

function calculate_doy($date_jour) {
Tist($jour, $mois, $annee) = explode('/', $date_jour);
if ($time = mktime(0, O, O, $mois, $jour, $annee)) {
return date('z', $time);
}

return false;

http://www.php.net/list
http://www.php.net/explode
http://www.php.net/intval
http://www.php.net/intval
http://www.php.net/intval
http://www.php.net/count
http://www.php.net/array
http://www.php.net/list
http://www.php.net/explode
http://www.php.net/mktime
http://www.php.net/date

SQL access

SPIP 2 can read, write and use the following database management
systems: MySQL, PostGres and SQLite.

Although their query syntax is not the same, thanks to a set of special
SQL abstract functions, SPIP allows the development of database
interactions independent of the systems.

253

254

Modification of the SQL manager

SPIP essentially applies the SQL standards, but will also understand a large
portion of the MySQL particularities, that it will then translate for the SQLite or
PostGres database managers when necessary.

SPIP does not need any special declaration (other than the presence of the
connection file necessary for the database in question) in order to read and
extract data from such databases, regardless of whether this is through the use
of templates or, via PHP, through the SQL abstraction functions envisaged and
prefixed with sq1_.

Declaring table structures

In certain cases, particularly for plugins which add tables into the database, or
add columns into a table, it is necessary to declare the SQL structure of the
table, since it is based on these declarations that SPIP constructs its queries to
create or update the tables.

SPIP will therefore attempt to modify the declaration to the database manager
being used, by converting certain syntax that is particular to MySQL.

As such, if you declare a table with an "auto-increment" on the primary key as
proscribed by SPIP (as in ecrire/base/serial.php and ecrire/base/auxiliaires.php
by using the SPIP 2 specific pipelines declarer_tables_principales (p.153)
and declarer_tables_auxiliaires (p.145), SPIP will then translate the "auto-
increment" syntax so that it is appropriately accommodated when using
PostGres or SQLite.

In the same fashion, a declaration for an "ENUM" field specific to MySQL will
have the same functionality under PG or SQLite. The inverse, on the other
hand, is not true (PostGres specific declarations will not be understood by the
other databases).

Table updates and installation
When SPIP installs itself, it uses particular functions to install or update its
tables. Plugins may also use these functions in their own installation routines.

http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/serial.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/auxiliaires.php

These functions are declared in the ecrire/base/create.php file.

Creating tables

The creer_base($connect="") function creates tables missing in the
database which has the connection file specified in $connect. By default, this
is the principal connection.

This function creates the missing tables (of course, they must have already
been defined), but does nothing for modifying an existing table. If the table is
declared as a principal table (and not an auxiliary table), and if the primary key
is an integer, then SPIP will automatically assign an ’auto-increment’ type to
this primary key.

Updating tables

The maj_tables($tables, $connect='"') function updates existing
tables. It will only create fields that are missing; no field deletion will be
performed. The table name (character string) or list of table names (table) must
be provided to the function. There again, it is possible to specify a different
connection file other than the principal database.

If a table to be updated does not exist, it will be created, following the same
principle as creer_base () does for the auto-increment.

Examples:

include_spip('base/create');

creer_base();

maj_tables('spip_rubriques');
maj_tables(array('spip_rubriques', 'spip_articles'));

255

http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/create.php
http://www.php.net/array

256

The SQL API

SPIP’s SQL abstraction functions constitute an APl which contains the

following functions:

Name

Common elements
(p.258)

sql_allfetsel
(p.259)

sql_alltable (p.261)
sql_alter (p.261)
sql_count (p.263)

sql_countsel
(p.264)

sql_create (p.265)

sql_create base
(p.267)

sql_create_view
(p-267)

sql_date_proche
(p.269)

sql_delete (p.269)

sql_drop_table
(p.270)

sql_drop_view
(p-271)

sql_errno (p.272)
sql_error (p.272)
sql_explain (p.272)
sql_fetch (p.273)

sql_fetch_all
(p.275)

sql_fetsel (p.276)
sql_free (p.277)

Description

System parameters and options

Returns an array with all of the results from a selection

Returns an array of the existing SQL tables
Modifies the structure of an SQL table
Counts the number of rows in a selection resource

Counts the number of results

Creates a table according to the schema provided

Creates a database

Creates a view

Returns a date comparison expression based on a
date calculation

Deletes database records

Deletes a table!

Deletes a view

Returns the number code for the last SQL error
Returns the last SQL error

Explains how the SQL server will process a request
Returns a row from a selection resource

Returns a table with all the results from a query

Selects and returns the first row of results

Releases a resource

Name

sql_getfetsel
(p.277)

sql_get_charset
(p.278)

sql_get_select
(p.279)

sql_hex (p.280)

sql_in (p.281)
sql_insert (p.282)
sql_insertq (p.283)

sql_insertq_multi
(p.284)

sql_in_select
(p.286)

sql_listdbs (p.287)
sql_multi (p.287)

sql_optimize
(p.288)

sql_query (p.289)
sql_quote (p.289)
sql_repair (p.291)

sql_replace
(p-291)

sql_replace_multi
(p.292)

sql_seek (p.293)

sql_select (p.293)

sql_selectdb
(p.296)

sql_serveur
(p.297)

1 SQL access

Description

Retrieves the single column requested from the first
row in the selection

Requests if a particular character encoding is available
on the server

Returns the selection query

Returns a numeric value for a hexadecimal character
string

Constructs a condition using the IN operator
Inserts content into the database
Inserts content into a database (automatically filtered)

Used to insert several database rows in a single
operation

Returns an sq1_1in condition from the results of an
sql_select

Lists the databases available for a given connection
Extracts multilingual content

Optimises a given table

Executes a specific query
Filters (or escapes) an SQL parameter
Repairs a damaged table

Inserts or modifies a record

Inserts or replaces several records

Positions a selection resource at the designated row
number

Selects content

Selects the requested database

The API's principal transparent function

257

Name Description

sql_set_charset Requests the use of the specified character encoding

(p.298)

sql_showbase Returns a resource of the list of database tables
(p.298)

sql_showtable Returns a description of the table

(p-299)

sql_update (p.300) Updates a database record

sql_updateq Updates database content (and filters the data against
(p-301) SQL injection attacks)

sql_version Returns the version number of the database manager
(p.302)

Common elements

Within the set of sql_* functions, certain parameters are systematically
available and are used to denote the same information. These parameters
are all described here, principally so that they are not repeated ad infinitum in
multiple articles:

« $serveur (or $connect) is the name of the SQL connection file (in the
config/ directory. When not defined or empty, then the connection file
defined during SPIP installation will be used. Normally it is the
penultimate (last but one) parameter for the SQL abstraction functions.

+ $options equals true by default and is used to specify an optional
character with its usage. This parameter is normally the last for the SQL
abstraction functions. It may have the following values:

> true: any function in the SQL API and not found in the SQL
instruction set of the requested server will cause a fatal error.

o 'continue': no fatal error if the function is not found.

o and false: the SQL set function does not run the query which has
been calculated, but should return it instead (we therefore obtain a
text string that is a valid SQL query for the database manager
requested).

Some other parameters are often present from one function to another,

particularly so for all functions which are similar to sq1_select () by reusing
all or some of its parameters:

258

- $select, table of SQL columns to be retrieved,

« $from, table of SQL tables to be used,

« $where, table of column constraints where each element in the table will
be combined with a logical AND,

« $groupby, table of groupings of the results,

+ $orderby, table defining the ordering of the results,

* $1imit, string indicating the maximum number of results to return,

« $having table of post-constraints for the aggregation functions.

For functions used to modify content, there is another common parameter:
« $desc, which is a table of column descriptions for the SQL table
employed. If it is omitted, the description will be automatically calculated if
the calling functions have need of it.

Coding principles

A large number of parameters are tolerant in respect of the type of argument
which is passed to them, often accepting tables or text strings. This is the
case, for example, for the sql_select() parameters. Its first parameter is
$select, which corresponds to the list of SQL columns to be retrieved. Here
are the 4 functional coding methods for this parameter:

// 1 element

sql_select('id_article', 'spip_articles');
sql_select(array('id_article'), 'spip_articles');

// 2 elements

sql_select('id_article, titre', 'spip_articles');
sql_select(array('id_article', 'titre'), 'spip_articles');

Out of convention, which imposes no obligations on anyone, we generally
prefer to use the tabular (array) form whenever there is more than one element,
a coding method which is easier to analyse by the functions which translate
these abstracted coding methods into SQL queries.

259

http://www.php.net/array
http://www.php.net/array

260

sql_allfetsel

The sql_alTfetsel () functions retrieves an array with all of the results of
a selection. It accepts the same parameters as the sql_select() function
and is a combined short-cut to replace calling sql_select() and
sql_fetch_al1(Q). As it stores all of the results in a PHP array, be careful not

to exceed the memory limit allowed to PHP if you are dealing with large data
volumes.

It accepts 9 parameters:
1. $select,

$from,

$where,
$groupby,
$orderby,
$Timit,

$having,
$serveur,
$option.

© ® N Ok ONDN

The sql_allfetsel () function is used as shown below:

$all = sql_allfetsel('column', 'table');
// $al1[0]['column'] is the column in the first line
retrieved

Example

Select all of the objet / id_objet pairs associated with a particular
document:

if ($1iens = sql_allfetsel('objet, id_objet',
'spip_documents_liens', 'id_document=' . dintval($id))) {
foreach ($1iens as $1) {
// $1['objet'] and $1['id_objet']
}

http://www.php.net/intval

The "Contact avancé" plugin selects all of the emails for the recipients of
a message as shown below:

// Retrieve who it was sent to

$destinataire = _request('destinataire');

if (!is_array($destinataire)) {
$destinataire = array($destinataire);

3
$destinataire = array_map('intval', $destinataire);
$mail = sql_allfetsel('email', 'spip_auteurs',

sql_in('id_auteur', $destinataire));

sql_alltable

The sq1_alltable() function returns an array listing the various SQL tables

that exist in the database. it accepts the same parameters as sql_showbase

(p.298):

1. $spip empty by default, the parameter is used to list only the tables
using the prefix defined for SPIP tables. Use '%" instead if you want to

list ALL tables,
2. $serveur,
3. $option.
Usage:

$tables = sql_alltable();
sort($tables);
// $tables[0] : spip_articles

sql_alter
The sq1_alter () function is used to send an ALTER type SQL command to
the database server to modify the structure of the database.

The function accepts 3 parameters:
1. $qis the query string (without the term "ALTER") to be executed

2. $serveur,
3. $option

261

http://www.php.net/is_array
http://www.php.net/array
http://www.php.net/array_map
http://www.php.net/sort

262

Note: This function directly assumes an SQL formatted command, so it is
important to respect the SQL standards. It is possible in future versions of
SPIP, that the $q parameter will accept a more structured table as input in
order to simplify porting to other systems.

The function is used as shown in this example:

sql_alter("TABLE table ADD COLUMN column_name INT");
sql_alter("TABLE table ADD column_name INT"); // COLUMN is an
optional keyword for this sSQL command

sql_alter("TABLE table CHANGE column_name column_name INT
DEFAULT '0'");

sql_alter("TABLE table ADD INDEX column_name (column_name)");
sql_alter("TABLE table DROP INDEX column_name");
sql_alter("TABLE table DROP COLUMN column_name");
sql_alter("TABLE table DROP column_name"); // COLUMN is an
optional keyword for this command

// You may pass several actions, but be careful about other
DBMS ports:

sql_alter("TABLE table DROP column_nameA, DROP
column_nameB") ;

The sql_alter() function is particularly used during updates for plugins in
the {plugin_name}_upgrade() functions for the various plugins you may
have installed.

Example

Add a "composition" column to the spip_articles table (plugin
"Composition"):

sql_alter("TABLE spip_articles ADD composition
varchar(255) DEFAULT '' NOT NULL");

Add "css" to the "spip_menus" table (plugin "Menus"):

sql_alter("TABLE spip_menus ADD COLUMN css tinytext
DEFAULT "' NOT NULL");

The "TradRub" plugin includes in its installation procedure an instruction
to add the "id_trad" column to the spip_rubriques table by using the
maj_tables () function provided for such a purpose, then adds an index
on that same column using sq1_alter():

function tradrub_upgrade($nom_meta_base_version,
$version_cible){

$current_version = 0.0;

if (
(!isset($GLOBALS['meta’][$nom_meta_base_version]))

|| (($current_version =

$GLOBALS["'meta'] [$nom_meta_base_version]) !=
$version_cible))

{

include_spip('base/tradrub');

if ($current_version==0.0){
include_spip('base/create');
maj_tables('spip_rubriques');
// index on the new field
sql_alter("TABLE spip_rubriques ADD INDEX

(id_trad)");

ecrire_meta($nom_meta_base_version,
$current_version=$version_cible, 'non');
L
}

sql_count
The sqgl_count() function returns the number of rows for a selection

resource opened with sq1_select().

It accepts 3 parameters:
1. $res is the resource identifier for a selection,

2. $serveur,
3. S$option.

It is used as shown below:

$res = sql_select('column', 'table');

263

http://www.php.net/isset

if ($res and sql_count($res)>2) {
// checks to see if there are at least 3 rows in the
results!

}

Example
Possible application: display a count of the total number of elements.

if ($res = sql_select('titre', 'spip_rubriques',
'id_parent=0')) {
$n = sql_count($res);
$i = 0;
while ($r = sql_fetch($res)) {
echo "section " . ++%i . " / $n : $r[titrel
";
// e.g. Section 3 / 12 : La fleur au vent

sql_countsel

The sql_countsel() functions returns the number of rows for a desired
selection. It is more-or-less a short way of writing
sql_select('COUNT(*)"', ...).

It accepts the same arguments as sq1_select () except for the first (normally
the columns):

1. $from,

$where,

$groupby,

$orderby,

$1imit,

$having,

$serveur,

$option.

© N ok~ N

It is used as shown in this example:

264

$nomber = sql_countsel("table");

Example
Count the number of keywords in a given keyword group:

$groupe = sql_countsel("spip_mots",
"id_groupe=$id_groupe");

Return false if a section has any articles NOT in the trash:

if (sql_countsel('spip_articles', array(
"id_rubrique=$id_rubrique",
"statut <> 'poubelle'"

) {
return false;

}

If the spip_notations_objets table in the "Notations" table does
not yet have any entry for the object identifier specified, then perform a
database insert, otherwise perform an update:

// Update or 1insert?

if (!sql_countsel("spip_notations_objets", array(
"objet=" . sql_quote($objet),
"id_objet=" . sql_quote($id_objet),

) {
// Insert a record for the object notation
sql_insertq("spip_notations_objets", ...);
V/ANYY

} else {
// Update if there already is a record
sql_updateq("spip_notations_objets", ...);
// ...

3

265

http://www.php.net/array
http://www.php.net/array

266

sql_create
The sql_create() function is used to create an SQL table according to the
schema provided.

It accepts 7 parameters:
* $nom is the name of the table to create
+ $champs is an array of column descriptions
+ $clefsis an array of key descriptions
- $autoinc: if afield is to be a primary key and is numeric, then the auto-
increment property will be added. false by default.
« $temporary: is this a temporary table? Default value: false
* $serveur,
« $option

It is used as shown below:

sql_create("spip_tables",
array (
"id_table" => "bigint(20) NOT NULL default '0'",

"columnl"=> "varchar(3) NOT NULL default 'oui'",
"column2"=> "text NOT NULL default """

Dg

array (
'PRIMARY KEY' => "did_table",
'KEY columnl' => "columnl"

)

b

As a general rule, plugins should declare their SQL tables using the pipelines
intended for the purpose: declarer_tables_principales (p.153) and
declarer_tables_auxiliaires (p.145), and use the creer_base() or
maj_tables('spip_tables") functions during installation of each plugin,
which will call the sq1_create () function when necessary. Read more on this
topic here: "Table updates and installation (p.254)".

http://www.php.net/array
http://www.php.net/array

Example

Example of creating a "spip_mots_tordus" table which will be a link with
"spip_tordus". Note that the primary key is composed from 2 columns:

sql_create("spip_mots_tordus",
array (
"jd_mot" => "bigint(20) NOT NULL default '0O'",
"jd_tordu"=> "bigint(20) NOT NULL default '0O'"

)’
array (

'PRIMARY KEY' => "id_tordu,id_mot"
)

b

sql_create_base
The sql_create_base() function attempts to create a database with the
name provided. The function returns false if an error occurs.

It accepts 3 parameters:
« $nom is the name of the database to create,
+ $serveur,
« $option

This function is only used during the installation of SPIP to create a database
as requested for a given database manager:

sql_create_base($sel_db, $server_db);

When using SQLite, the database name corresponds to the file name without
the file type extension (.sql1ite will be added automatically) and the file will
be stored in the directory defined by the _DIR_DB constant, which by default is
setto config/bases/.

267

http://www.php.net/array
http://www.php.net/array

268

sql_create_view

The sql_create_view() function creates a view for the selection query
provided. The view can then be used by SPIP loops or by other selection
commands.

It accepts 4 parameters:

1. $nomis the name of the view created,

2. $select_query is the selection query,
3. $serveur,

4. Soption.

It can be used in conjunction with the sql_get_select (p.279) function to retrieve
the desired selection:

$selection = sql_get_select('column', 'table');
sql_create_view('myview', $selection);

// utilisation

$result = sql_select('column', 'myview');

Note: Whenever a selection column uses the 'name.column' notation, you
absolutely must declare an alias for the column, otherwise certain database
ports (SQLite in particular) will not create the expected view, e.g.
"name.column AS column'.

Example

This small example demonstrates this function by creating a (rather
useless) table from 2 columns in a section:

$select = sql_get_select(array(
'r.titre AS t',
'r.id_rubrique AS id'
), array(
'spip_rubriques AS r'
)
// create the view
sql_create_view('spip_short_rub', $select);
// use 1it:
$titre = sql_getfetsel('t', 'spip_short_rub', "'id=8");

http://www.php.net/array
http://www.php.net/array

The view could also be used within a SPIP template file, as in:

<BOUCLE_view(spip_short_rub) {id=8}>
<h3>#T</h3>
</BOUCLE_view>

sql_date_proche

The sq1_date_proche() function is used to return a conditional expression

for a column in relation to a date.

It accepts 5 parameters:
1. $champ is the SQL column to be compared,

2. $interval is the comparison interval value: -3, 8, ...

3. $unite is the units of reference (DAY’, 'MONTH’, 'YEAR, ...)
4. $serveur,

5. $option.

It is used as shown below:

$ifdate = sql_date_proche('column', -8, 'DAY');
$res = sql_select('column', 'table', $ifdate);

Example

Another use for a selection query such as illustrated below, is to store the
boolean result in an alias. The alias recently indicates whether or not
an author has logged in during the last 15 days:

$row = sql_fetsel(

array("*", sql_date_proche('en_ligne', -15, 'DAY'")
AS recently"),

"spip_auteurs",

"id_auteur=$id_auteur");
// $row['recently'] : true / false

269

http://www.php.net/array

sql_delete
The sq1_delete() function is used to delete records from an SQL table and
returns the number of records that were all deleted.

It has 4 parameters:

1. $table is the name of the SQL table,
2. S$where,

3. $serveur,

4. S$option.

It is used as shown below:

sql_delete('table', 'id_table = ' . intval($id_table));

Example

Delete the link between all sections and a given keyword:

sql_delete("spip_mots_rubriques", "id_mot=$id_mot");

One of SPIP’s standard periodical tasks is to delete old articles that have
been put in the dustbin (poubelle), as detailed below:

function optimiser_base_disparus($attente = 86400) {
$mydate = date("ymdHis", time() - $attente);
// ...
sql_delete("spip_articles"”, "statut='poubelle' AND
maj < $mydate");
3

sql_drop_table
The sq1_drop_table() function deletes an SQL table from the database. It
returns true if successful, and false if not.

It accepts 4 parameters:
1. $table is the name of the table,

270

http://www.php.net/intval
http://www.php.net/date
http://www.php.net/time

2. $existis used to request verification of the table’s existence for the
deletion (which translates into adding IF EXISTS to the SQL command).

By default, ' ', it passes true to confirm the table is there before trying to
delete it,

3. $serveur,

4. Soption.

This sq1_drop_table() function is used as shown below:

sql_drop_table('table');
sql_drop_table('table', true);

Example

Plugins often use this function for complete removal (data included) of a
plugin when so requested by the administrator, as shown in this example
from the "Géographie" plugin:

function geographie_vider_tables($nom_meta_base_version)

{
sql_drop_table("spip_geo_pays");
sql_drop_table("spip_geo_regions");
sql_drop_table("spip_geo_departements");
sql_drop_table("spip_geo_communes");
effacer_meta($nom_meta_base_version);
ecrire_metas();

sql_drop_view

The sql_drop_view() function deletes a database view. It accepts the
same parameters as sq1_drop_table() and returns true if successful and
false if not.

Its 4 parameters are:
1. $table is the name of the view,

2/1

272

2. $exist used to request verification of the existence of the view before
deletion (this translates into the addition of IF EXISTS to the SQL
command). By default ' ', it includes true to request the verification,

3. $serveur,

4. Soption.

The sqT1_drop_view() function is used as follows:

sql_drop_view('view');
sql_drop_view('view', true);

sql_errno

The sql_errno() functions returns the number code for the most recent
SQL error that has occurred. This function is used in SPIP to automatically
record the details in the incident logs generated for SQL actions, which are
centrally managed by the spip_sql_erreur() function in ecrire/base/
connect_sql.php

sql_error

The sql_error() function returns the most recent SQL error that has
occurred. This function is used within SPIP to automatically record details for
the incident logs generated for SQL actions, which are centrally managed by
the spip_sql_erreur() function in ecrire/base/connect_sql.php

sql_explain

The sql_expTain() function is used to return an explanation of how the SQL
server will process a request. This function is used by the debugger to provide
information relating to the generated SQL commands.

The function accepts 3 parameters:
1. $qisthe SQL query,

2. $serveur,

3. $option.

http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/connect_sql.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/connect_sql.php
http://trac.rezo.net/trac/spip/browser/spip/ecrire/base/connect_sql.php

One possible usage might be:

$query = sql_get_select('column', 'table');
$explain = sql_explain($query);

sql_fetch

The sq1_fetch() function returns a row, in the form of an associative array,
from the results of a selection. It returns false if there are no more rows to be
retrieved.

It accepts 3 parameters, only the first of which is mandatory:
1. $res is the resource generated by an sql_select(),

2. $serveur,

3. $option.

This function is used in strict conjunction with sq1_select(), often used in
the following manner:

if ($res = sql_select('column', 'table')) {
while ($r = sql_fetch($res)) {
// use the results with $r['column’']

}

Example
List the articles proposed for publication:

$result = sql_select("id_article, id_rubrique, titre,
statut", "spip_articles", "statut = 'prop'", "", "date
DESC");
while ($row = sql_fetch($result)) {
$id_article=$row['id_article'];
if (autoriser('voir', 'article', $id_article)) {
// actions

}

273

274

The "Contact avancé" plugin can save messages in the spip_messages
table. When one of these messages is deleted, it also deletes any
documents that may be linked to it:

function action_supprimer_message() {
$securiser_action =
charger_fonction('securiser_action', 'inc');
$id_message = $securiser_action();
// Check if we have any documents
if ($docs = sql_select('id_document',
'spip_documents_liens', 'id_objet=' . intval($id_message)
' AND objet="message"')) {
include_spip('action/documenter');
while ($id_doc = sql_fetch($docs)) {

supprimer_Tien_document($id_doc['id_document'],
"message"”, $id_message);

}
}
sql_delete("spip_messages", "id_message=" .
sql_quote($id_message));
sql_delete("spip_auteurs_messages", "id_message=" .
sql_quote($id_message));

}

The calculer_rubriques_publiees() function within ecrire/
inc/rubriques.php is used to recalculate the statuses and dates for
sections in order to find out which have the status of "publié" (published).
Within the function, a code segment selects the sections which have
published documents (and therefore so does the section) and assigns a
temporary column for the new status and new date. Once the updates are
completed, the temporary column is saved into the real column:

// Set the counters to zero
sql_updateq('spip_rubriques', array(

'date_tmp' => '0000-00-00 00:00:00"',

'statut_tmp' => 'prive'));
7/ ool
// Publish and date the sections which have a published
document
$r = sql_select(

array (

http://www.php.net/intval
http://www.php.net/array
http://www.php.net/array

"rub.id_rubrique AS id",
"max(fille.date) AS date_h"),
array (
"spip_rubriques AS rub",
"spip_documents AS fille",
"spip_documents_liens AS 1lien"),
array (

"rub.id_rubrique = lien.id_objet",
"Tien.objet="rubrique'",
"lien.id_document=fille.id_document",
"rub.date_tmp <= fille.date",
"fille.mode="document'", "rub.id_rubrique"));

while ($row = sqgl_fetch($r)) {

sql_updateq('spip_rubriques’,
array(
'statut_tmp'=>"publie',
'date_tmp'=>$row['date_h']),

"id_rubrique=" . $row['id']);

3

/4 [acol

// Save the modifications

sql_update('spip_rubriques', array(
'date'=>"'date_tmp',
'statut'=>"statut_tmp'));

sql_fetch_all

The sq1_fetch_aT11() function returns an array containing all of the rows for
a selection resource. Since all of the results will be stored in current memory,
you should be careful not to select too much content at once.

The sq1_fetch_al11() function accepts 3 parameters:
1. $res is the resource obtained using an sql_select(),
2. $serveur,

3. $option.

It is used as in the example below:

$res = sql_select('column', 'table');
$all = sql_fetch_all($res);
// $al11[0]['column'] is the first row

275

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

276

However, this function is not often used, since the sq1_al1fetsel () function
can execute much the same operation but also with selection parameters:

$all = sql_allfetsel('column', 'table');
// $al11[0]['column'] is the first row

sql_fetsel

The sql_fetsel function returns the first row of results for a selection. It
accepts the same parameters as the sq1_select() function and is a short-
cut for the combined call of sq1_select() and sql_fetch().

Its parameters are:
1. $select,
$from,
$where,
$groupby,
$orderby,
$1imit,
$having,
$serveur,
$option.

© N Ok WD

It is used as shown below:

$r = sql_fetsel('colonne', 'table');
// $r['colonne']

Example
Select the "id_trad" and "id_rubrique" columns of a given article:

$row = sql_fetsel("id_trad, id_rubrique",
"spip_articles", "id_article=$id_article");
// $row['id_trad'] and $row['id_rubrique']

Select all the columns for a given news item:

$row = sql_fetsel("*", "spip_breves",
"id_breve=$id_breve");

sql_free

The sql_free() function is used to release an SQL resource opened using
a call to the sq1_select () function. Ideally this function ought to be called
after finishing using each resource.

It accept 3 parameters:

1. S$res is the resource for a selection,
2. $serveur,

3. $option.

The sqT1_free() function is therefore used as shown below:

$res = sql_select('column', 'table');
// operations using the sql_fetch($res) and similar functions

// then close the resource
sql_free($res);

Note that the API functions call this function automatically. This is the case for:
+ sql_fetsel (and sql_getfetsel),
« sql_fetch_all (and sql_allfetsel),
e sqgl_in_select.

sql_getfetsel

The sql_getfetsel() function retrieves the single column requested from
the first row of the selection. It accepts the same parameters as the
sql_select() function and is a short-cut for the combination of calling
sql_fetsel() and array_shift().

Its parameters are:
1. $select nominating the desired column,
2. $from,

277

278

$where,
$groupby,
$orderby,
$1imit,
$having,
$serveur,
$option.

© ® N Ok

It is used as shown below:

$colonne = sql_getfetsel('colonne', 'table', 'id_table='
intval($id_table));

Note that an alias can also be defined as shown here:

$alias = sql_getfetsel('colonne AS alias', 'table',
'id_table=" . intval($id_table));
Example

Find out the sector for a section (rubrique):

$id_secteur = sql_getfetsel("id_secteur",
"spip_rubriques", "id_rubrique=" . dintval($id_rubrique));

The "Job Queue" plugin manages a list of scheduled tasks, so we can find
out the date of the next task to be performed with this code:

$date = sql_getfetsel('date', 'spip_jobs', , s
'date', '0,1");

sql_get_charset
The sql_get_charset() function is used to check if the usage of the
particular character encoding is available on the database server.

sql_get_charset() accepts three parameters, with only the first being
mandatory:

http://www.php.net/intval
http://www.php.net/intval
http://www.php.net/intval

1. $charset is the charset being requested, such as "utf8"
2. $serveur,
3. $options.

sql_get_select

The sql_get_select() function returns the query for the requested
selection. This is an alias for the sql_select() function but which passes
the $option argument set to false, so that the SQL query is returned rather
than being executed.

It accepts the same arguments as sq1_seTlect () except for the last, which is
provided by the function:

1. $select,

$from,

$where,

$groupby,

$orderby,

$Timit,

$having,

$serveur

® N oA WD

It is applied as shown in this example:

$request = sql_get_select('column', 'table');
// returns "SELECT column FROM table" (for a MySQL database)

This function therefore returns a SQL query which is valid for the database
manager in use. As this query is clean, it can be directly used by the
sql_query() function, but more often than not, it is used to create more
complex queries in conjunction with sq1_in() :

// Tist of identifiers

$ids = sql_get_select('id_table', 'tableA');

// selection based on that prior selection

$results = sql_select('titre', 'tableB', sql_in('id_table’,
$ids)));

279

280

Example

To find out the titles of the sections which have article identifiers greater
than 200, one of the possible methods (we could also use a join) is to use
sql_get_select():

// create the selection query to find the Tlist of
sections
$ids = sql_get_select('DISTINCT(id_rubrique)’',
'spip_articles', array('id_article > 200'));
// select the titles of those sections
$res = sql_select('titre', 'spip_rubriques',
sql_in('id_rubrique', $ids));
while ($r = sql_fetch($res)) {

// display each title.

echo $r['titre'] . '
';

Considerably more complicated, we could search for examples in certain
criteria functions, for example with the {noeud} criteria of the "SPIP
Bonux" plugin which creates a sub-query to retrieve the list of objects
which have child records.

function critere_noeud_dist($idb, &$boucles, $crit) {
/) [Laocod
// this construction with IN will make the compiler
request
// the use of the sql_in() functions
$where = array("'IN'", "'S$boucle->id_table." .
"$primary'", "'('.sql_get_select('$id_parent',
'$table_sql').")"'");
if ($crit->not)

$where = array("'NOT'", S$where);
$boucle->where[]= $where;

}

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

sql_hex

The sql_hex() function returns a numeric value for a hexadecimal
expression, transforming 09af into 0x09af (for MySQL and SQLite). This is
principally used to write hexadecimal content into a numerically-typed SQL
column.

It accepts 3 parameters:

1. $val is the character string to be translated,
2. $serveur,

3. $option.

Usage:

$hex = sql_hex('0123456789%abcdef"');
sql_updateq('table', array('column'=>$%$hex), 'id_table='
$id_table);

sql_in
The sql1_in() function is used to create a column condition using the IN SQL
keyword.

It employs 5 parameters:

1. $val is the name of the column,

2. $valeurs is the list of values, in the form of an array or a comma-
separated sequence of strings. These values will be automatically filtered
using sq1_quote,

3. $not is used to provide negation. By default it is empty ' '; assign 'NOT'
to execute a NOT IN condition,

4. $serveur,

5. $option.

It can be used as follows:

$vals = array(2, 5, 8);

// where $vals = "2, 5, 8";

$in = sql_in('id_table', $vals);

if ($res = sql_select('column', 'table', $in)) {
// ...

2081

http://www.php.net/array
http://www.php.net/array

2082

Example

The "Tickets" plugin uses sq1_in() to obtain the title of a ticket only if it
has a status matching one of those listed:

function
inc_ticket_forum_extraire_titre_dist($id_ticket){
$titre = sql_getfetsel('titre', 'spip_tickets',
array (
'id_ticket = ' . sqgl_quote($id_ticket),
sql_in('statut', array('ouvert', 'resolu',
'ferme'))
));
return $titre;
}

sql_insert

The sql_insert() function is used to insert content into a database. The
SQL ports may experience problems when using this function, and if so, they
should use the sql_insertq() function instead. This function is described
here only to ensure support for restoring old backups and for transitioning old
scripts.

The function accepts 6 parameters:

$table is the SQL table,

$noms is the list of columns affected,
$valeurs is the list of values to be stored,
$desc,

§$serveur,

$option.

IS O o

Usage example:

sql_insert('table', '(column)', '(value)');

http://www.php.net/array
http://www.php.net/array

Example
Insert a link to a keyword for an article:

$id_mot = intval($id_mot);

$article = intval($article);
sql_insert("spip_mots_articles", "(id_mot, id_article)",
"(id_mot, Sarticle)");

Example of migrating to sq1_insertq(Q):

sql_insertq("spip_mots_articles", array(
"id_mot" => $id_mot,
"id_article" => $article));

sql_insertq

The sql_insertq() function is used to perform a record insert into the
database. Non-numeric values will be filtered using functions modified for each
database manager in order to correctly handle apostrophes. When possible,
the function returns the identifying number for the inserted primary key.

The function accepts 5 parameters:
1. $table is the name of the SQL table,

2. S$couples is an array table of (name / value) pairs,
3. $desc,

4. $serveur,

5. $option.

It is used as shown below:

$id = sql_insertq('table', array('columnl'=>"'valuel',
'column2'=>"value2'));

2083

http://www.php.net/intval
http://www.php.net/intval
http://www.php.net/array
http://www.php.net/array

2084

Example

The 1insert_xx() functions like insert_article() described in
ecrire/action/editer_article.php are used to create database inserts for
the objects in question, by managing the default values and calling the
pre_insertion (p.172) appropriate pipeline. These functions return the
identifier of the created record.

These functions therefore run the sql_insertq() function after the
pre_insertion pipeline. If an author is identifiable during the process,
then the article is linked to that author:

$id_article = sql_insertq("spip_articles", $champs);

// check that the server doesn't return an error

if ($id_article > O AND

$GLOBALS['visiteur_session']['id_auteur']) {

sql_insertq('spip_auteurs_articles', array(

'id_auteur' =>

$GLOBALS['visiteur_session']['id_auteur'],
'id_article' => $id_article));

}

sql_insertq_multi

The sql_insertq_multi () function is used to insert, in one single action,
several elements with identical schemas into a database table. If the database
manager port allows it, it will then use a single SQL command to implement
the insert. More specifically, a single SQL command for each batch of 100
elements is used in order to avoid memory congestion.

The function has the same 5 parameters as sql_insertq() , but the second
parameter for this function is a table of a table of pairs, and not just directly a
table of pairs:

1. $table is the name of the SQL table,

2. $couples is a table of associative tables of name / value pairs,
3. $desc,

4. $serveur,

5. $option.

http://trac.rezo.net/trac/spip/browser/spip/ecrire/action/editer_article.php
http://www.php.net/array

The columns used in this command absolutely must be the same set for all of
the inserts. The command is used as shown below:

$id = sql_insertg_multi('table', array(
array('column' => 'value'),
array('column' => 'value2'),
array('column' => 'value3'),

Example

Searches made using SPIP use the spip_resultats table to store
some elements used as a cache, by taking care to use the table for the
SQL connection. $tab_couples contains all of the data to be inserted:

// insert the results into the results cache table
if (count($points)){
$tab_couples = array();
foreach ($points as $id => $p){
$tab_couples[] = array(
'recherche' => $hash,
'id' = $id,
'points' => $p['score']
DE
}
sql_insertg_multi('spip_resultats', $tab_couples,
array(), $serveur);

}

The "Polyhierarchie" plugin also uses this function for inserting the list of
sections just recently linked to a given object:

$ins = array();
foreach($id_parents as $p){
if ($p) {
$ins[] = array(
'id_parent' => $p,
'id_objet' => $id_objet,
'objet' => $objet);
}
if (count($ins)) {

285

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/count
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/count

sql_insertg_multi("spip_rubriques_liens", $ins,
, $serveur);

}

sql_in_select
The function sql_in_select() returns a sql_in from the result of a
sql_select.

It accepts the same arguments as sq1_select plus one additional parameter
in first place:

1. $inis the name of the column on which the IN will be applied,
$select,

$from,

$where,

$groupby,

$orderby,

$1imit,

$having,

$serveur,

$option.

© © N ORA®N

N

You can use it like this:

$where = sql_in_select("column", "column", "tables",
"id_parent = $id_parent™));
// $where: column IN (3, 5, 7)

if ($res = sql_select('column', 'another_table', $where)) {
// ...
}
Example

Delete every link between an article and the keywords of a given keyword
group:

sql_delete("spip_mots_articles", array(

286

http://www.php.net/array

"id_article=" . $id_article,
sql_in_select("id_mot", "id_mot", "spip_mots",
"id_groupe = $id_groupe"));

sql_listdbs

The sq1_Tistdbs () function lists the various databases that are available for
a particular connection. It returns a selection resource or directly a PHP array
of the various databases (as is the case for SQLite).

It accepts 2 parameters:
1. $serveur,
2. $option.

SPIP uses this function during the installation routine to permit the selection,
when one can be made, of which database to use from those authorised by the
database manager.

$result = sql_listdbs($server_db);

sql_multi

The sql_multi() function applies an SQL expression to a column that
contains a multi-lingual expression (p.0) (<multi>) in order to extract from
it the portion corresponding to a nominated language. It returns a character
string typed as: expression AS multi. This operation is essentially used to
simultaneously request a sort on this column.

It accepts 4 parameters:

1. $sel is the name of the column,

2. $1ang is the language code (’fr’, ‘es’, ...),
3. $serveur,

4. $option

It is used as shown below:

$multi = sql_multi('column', 'Tanguage');

287

2088

$select = sql_select($multi, 'table');

Note that in a template file, the loop criteria {par multi

xX} where XX is

the name of the column to be sorted, will also call this function in order to sort

according to the current language.

Example

SPIP uses this function to sort the lists according to the title of an element

and according to the site visitor nominated language:

$select = array(

if ($results = sql_select($select, 'spip_mots',
"id_groupe=$id_groupe"”, "', 'multi')) {
while ($r = sql_fetch($results)) {
// $rl'titre'] $Sr['multi']
}

In similar fashion, the "Grappes" plugin uses it here:

"$spip_lang"), "spip_grappes", , , "multi'™)
foreach ($grappes as $g) {

// $gl'multi']
}

sql_optimize

'id_mot', 'id_groupe', 'titre', 'descriptif',
sql_multi ("titre", $GLOBALS['spip_lang']));

$grappes = sql_allfetsel("*, ".sql_multi ("titre",

The sql_optimize() function is used to optimise an SQL table. This function
is called by the optimiser_base_une_tabTle() function which is
periodically called by the cron mechanism. Please refer to the OPTIMIZE
TABLE or VACUUM commands for the appropriate SQL database manager to
understand the details of what is being executed by these commands.

The function accepts 3 parameters:

http://www.php.net/array

1. $table is the name of the table to be optimised,
2. $serveur,

3. $option.

Usage:

sql_optimize('table');

Note: SQLite can not optimise one table at a time, but optimises the entire
database in one hit. In this case, if the sq1_optimize() function is called
multiple times in a row, then the operation will actually only be performed just

once for the first call.

sql_query

The sql_query() function executes the query passed to it as a parameter.
It is the least portable of the SQL instruction command set; it should therefore
be avoided wherever possible in preference to the other more specific SQL API

functions.

It accepts 3 parameters:

1. $ins isthe SQL query,
2. $serveur,

3. $option.

Usage:

$res = sql_query('SELECT * FROM spip_meta');

// but we would prefer you used this instead:

$res = sql_select('*', 'spip_meta');

289

290

sql_quote

The sql_quote() function is used to secure or filter data content (with
apostrophes) in order to avoid SQL injection attacks. This function is very
important and must be used whenever content is provided by user data entry.
The sql_insertq, sql_updateq, and sql_replace functions
automatically apply this filtering for any inserted data (but not for the other
parameters like $where which ought to be filtered nonetheless anyway).

It accepts 3 parameters:

1. $val is the expression to be filtered,

2. $serveur,

3. $type optional, is the type of value expected. This would equal int for
an integer value.

It is used as shown below:

$charstring = sql_quote("David's car");

$fieldname = sql_quote($fieldname);

sql_select('column', 'table', 'titre=' . sql_quote($titre));
sql_updateq('table', array('column'=>"'value'), 'titre='
sql_quote($titre));

Whenever a numeric identifier is expected, which is often the case for primary
keys, the filtering may simply apply the PHP intval () function (the value zero
will be returned if the content passed is not numeric):

$id_table = intval(_request('id_table'));
sql_select('column', 'table', 'id_table=' . intval($id));

Example

The ur1_delete () function deletes URLs from the SQL table that stores
the URLs for SPIP editorial objects. It filters the strings using
sql_quote() and uses intval() on the identifier:

function url_delete($objet, id_objet, Surl=""){
$where = array(
"id_objet=" . intval($id_objet),
"type=" . sql_quote($objet)

http://www.php.net/array
http://www.php.net/intval
http://www.php.net/intval
http://www.php.net/array
http://www.php.net/intval

Dk
if (strlien($url)) {

$where[] = "url=" . sql_quote($url);
}

sql_delete("spip_urls", $where);

sql_repair

The sql_repair() function is used to repair a damaged SQL table. It is
called by SPIP when an administrator attempts to repair a database using the
ecrire/?exec=admin_tech page.

It accepts 3 parameters:

1. $table is the table which is requested to be repaired,
2. $serveur,

3. S$option.

Usage:

sql_repair('table');

Note: PostGres and SQLite database managers ignore this instruction.

sql_replace

The sq1_repTlace() function inserts or updates a record in an SQL table. The
primary key(s) must exist amongst the inserted data. The function automatically
secures the data.

It is recommended to use the specific sq1_insertq() and sql_updateq()
instead of this function to be more precise, at least where such is possible.

Its 5 parameters are:

1. $tableis the SQL table in question,
2. $couples contains the column/value pairs to be modified,

291

http://www.php.net/strlen

292

3. $desc,
4. $serveur,
5. $option.

It is used as shown below:

sql_replace('table', array(
'column' => 'value',
'id_table' => $id

D)

sql_replace_multi

The sql_replace_muTti () function is used to insert or replace several rows
(which have the same schema) for an SQL table in a single operation. The
values are automatically filtered against SQL injection attacks. It is necessary
that the columns of inserted pairs contain the primary key(s) for that table.

It is recommended to use the specific functions sq1_insertq_multi () and
sql_updateq() instead of this function to be more precise, at least where
such is possible.

It has the same 5 parameters as sql_replace (p.291) :
1. $tableis the SQL table in question,

2. $couples is a table of column/value pairs to be modified,
3. $desc,

4. $serveur,

5. $option.

It is used as shown below:

sql_replace_multi('table', array(
array (
'column' => 'valuel',
'id_table' => $idl

Do

array (
'column' => 'value2',
'id_table' => $id2

)

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

sql_seek

The sql_seek() function positions a selection resource originating from a

sql_select() atthe designated row number.

It accepts 4 parameters:

1. $res, the resource,

2. $row_number, the row number,
3. $serveur,

4. Soption.

It is used as shown below:

if ($res = sql_select('column', 'table')) {
if (sql_seek($res, 9)) { // go to number 10
$r = sql_fetch($res);
// $r['column'] of the 10th result
}
// return back to the start
sql_seek($res, 0);

sql_select

The sql_select () function selects content form the database and returns an
SQL resource when successful or false in the event of an error.

It accepts up to 9 parameters, the first 2 being mandatory, and sequenced
in the same descriptive order as a standard SQL query. Each parameter will
(preferably) accept an array as input data, but will also accept character strings

with elements separated by commas:

1. $select,
2. $from,

3. $where,
4. $groupby,
5. $orderby,

293

$Timit,
$having,
$serveur,
$option.

© x® N o

The sq1_select() function is often coupled with an sq1_fetch(), such as
shown here below:

// selection
if ($resultats = sql_select('column', 'table')) {
// 1oop on the results
while ($res = sql_fetch($resultats)) {
// use the results
// $res['column']

The $seTect and $from parameters accept the declaration of aliases. This
offers the following type of construction:

if ($r = sql_select(

array (
'a.column AS colA',
'b.column AS colB',
'SuM(b.number) AS btotal'

g

array (
'tableA AS a',
'tableB AS b'

) o

while ($1igne = sql_fetch($r)) {
// we now have access to:
// $ligne['colA'] $T1igne['colB'] $1igne['btotal']

294

http://www.php.net/array
http://www.php.net/array

Example

Select the root sections (id_parent=0) in the "spip_rubriques" table sorted
by rank [1 (p.296)], then in alphanumeric order, and request all of the
columns (total selection with ") :

$result = sql_select('*"', "spip_rubriques",

"id_parent=0", '', 'O+titre,titre');

while ($row = sql_fetch($result)){
$id_rubrique = $row['id_rubrique'];

4 ooc

Select cats but not dogs (in the title) for articles in sector 3:

$champs = array('titre', 'id_article', 'id_rubrique');
$where = array(

'id_secteur = 3',

'titre LIKE "%chat%" ',

'titre NOT LIKE "%chien%"'
DE

$result = sql_select($champs, "spip_articles", S$where);

Select the titles and extensions recognised for documents, and store the
result in a table:

$types = array();

$res = sql_select(array("extension", "titre"),

"spip_types_documents");

while ($row = sql_fetch($res)) {
$types[$row['extension']] = $row;

}

This selection could also be written as:

$res = sql_select("extension, titre",
"spip_types_documents");

Select the documents linked to a section, with the title of the section in
question, and sort in reverse date order:

295

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

$result = sql_select(

array (
"docs.id_document AS id_doc",
"docs.extension AS extension",
"docs.fichier As fichier",
"docs.date AS date",
"docs.titre AS titre",
"docs.descriptif AS descriptif",
"R.id_rubrique AS id_rub",
"R.titre AS titre_rub"),

array (
"spip_documents AS docs",
"spip_documents_liens AS lien",
"spip_rubriques AS R"),

array (
"docs.id_document = lien.id_document",
"R.id_rubrique = Tien.id_objet",
"Tien.objet="rubrique'",
"docs.mode = 'document'"),

"docs.date DESC");
while ($row=sql_fetch($result)) {
$titre=$row['titre'];
// ...
// and with the previous table:
$titre_extension =
$types[$row['extension']]['titre'];

}

[1 (p.0)] Maybe one of these days there will be a genuinely dedicated column for this!

sql_selectdb

The sql_selectdb() function is used to select a connection to a database
server that offers a database for use. The function returns true of the
operation is successful, otherwise it returns false.

The sql_selectdb() function has 3 parameters:
1. $nom being the name of the database to use,
2. $serveur,

3. S$option.

296

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

This function is used by SPIP during the installation routine to try to pre-select
the name of the database to be used, by means of attempting to select a
database with the same name as the login.

$test_base = $login_db;
$ok = sql_selectdb($test_base, $server_db);

sql_serveur

The sql_serveur () function is used to both connect to the database server
if that has not yet already been done, and to obtain the real name of the
function that will be executed for a requested transaction. This function is called
transparently by means of aliases. It is therefore normally not a useful operation
to employ it directly.

sql_serveur () accepts three parameters, with only the first being critical:

1.

$ins_sql is the name of the function requested from amongst the list of
functions that the API understands, such as "select", "update”,
"updateq"... When left deliberately empty, it is then simply requesting that
a connection be made to the database server if such has not already
been done.

$serveur,

$continue defines what should happen whenever the SQL API
instruction is not found by the requested database manager. Set by
default to false, the system returns a fatal error, but it is possible to
continue programme execution by setting this parameter’s value to be
true.

This function is typically used as below:

// calculate the function name

$f = sql_serveur('select');

// execution of the function as per the determined API
$f($argl, $arg2, ...);

297

298

If you are requesting the select instruction in the instruction set determined
for MySQL and existing in the ecrire/req/mysql.php file, then the $f variable
will equal spip_mysql_select. Correlation between the instructions and
the function is defined in that same file with a global variable:
spip_mysql_functions_1 (MySQL is the type of server, 1 is the version of
the instruction set).

Using aliases to make things simple

Practically all of the sql_* API functions are aliases which that calculate
a function using sql_serveur and then execute it. In this way, calling the
sql_select function performs (more or less) exactly the same operation as
the previous code. It is these instructions that ought to be used:

sql_select($argl, $arg2, ...);

sql_set_charset
The sql_set_charset() function requests the usage of the specified
encoding for transactions between PHP and the database manager.

sql_set_charset () accepts three parameters. Only the first is required:
1. $charset is the requested charset, such as "utfg8"

2. $serveur,

3. $options.

This function is called immediately after each connection to the database
server in order to specify the charset to be employed. This encoding selection
is defined elsewhere in the charset_sql_connexion meta variable created
during the installation of SPIP.

sql_showbase
The sq1_showbase () function is used to obtain a resource that can be used
with sq1_fetch () detailing the tables that exist in the database.

It accepts 3 parameters:

http://trac.rezo.net/trac/spip/browser/spip/ecrire/req/mysql.php

1. $spip empty by default, the parameter is used to list only the tables
using the prefix defined for SPIP tables. Use '%' instead if you want to

list ALL tables,
2. $serveur,
3. $option.
Usage:

if ($q = sql_showbase()) {
while ($t = sql_fetch($q)) {
$table = array_shift($t);
// ...

The sql_alltable (p.261) function is generally easier to use, since it directly
returns a PHP array listing the various database tables.

sql_showtable

The sq1_showtable() functions returns a description of an SQL table in an
associative array that lists the columns and their SQL "field" descriptions and
also listing the keys. Whenever a join declaration exists for the table declared in
tables_principales or tables_auxiliaires, the array will also include
an entry for the "join" key.

Its parameters are:
1. $table is the name of the table to investigate,

2. $table_spip is used to automatically replace "spip" by the table’s real
prefix; it equals false by default,

3. S$serveur,

4. S$option

Usage:

$desc = sql_showtable('spip_articles', true);

// $desc['field']['id_article'] = "bigint(21) NOT NULL
AUTO_INCREMENT"

// $desc['key']['PRIMARY KEY'] = "id_article"

// $desc['join']['id_article'] = "did_article"

299

http://www.php.net/array_shift

300

In most situations, it would be better to use the trouver_table (p.113) function,
which has a cache on the data structure, use the sql_showtable() function

and add some supplementary information.

$trouver_table = charger_fonction('trouver_table', 'base');
$desc = $trouver_table('spip_articles');

sql_update

The sql_update() function updates one or several records in an SQL table.
The elements passed are not automatically filtered against SQL injection
attacks as with sq1_updateq(), so you must watch out for SQL injection
attacks and use sql_quote() functions to secure the content when
necessary.

The function accepts 6 parameters:

$table is the SQL table in question,

$exp contains the modifications to be made,
$where,

$desc,

$serveur,

$option.

oo hr wN =

This function is principally used to modify values which use the same value as
the column being updated, e.g.

// increment the column by 1
sql_update('table', array('column' => 'column + 1'));

Whenever data added with this function are likely to include apostrophes or
originate from user data entry, it is important to secure the insert with the use
of the sq1_quote() function:

sql_update('table', array('column' => sql_quote($value)));

http://www.php.net/array
http://www.php.net/array

Example

Update the "id_secteur" column with the identifier for sections that don’t

have a parent:

// assign the id_secteur value for root sections

sql_update('spip_rubriques',

array('id_secteur'=>"id_rubrique'), "id_parent=0");

Add a set number of visits to the statistical data for certain articles:

$article_set = sql_in('id_article', $liste);

sql_update('spip_visites_articles',
array('visites' => "visites+$n"),
"date="'$date' AND $article_set");

sql_updateq

The sq1_updateq() function is used to update content in an SQL table. The

content passed to the function is automatically filtered.

Its 6 arguments are the same as for sq1_update():

1.

® gk 0D

$table is the SQL table in question,

$exp contains the modifications to be made,
$where,

$desc,

§$serveur,

$option.

It is used as shown below:

sql_updateq('table', array('column'’

intval($id_table));

=> $value),

'id_table="'

301

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array
http://www.php.net/intval

Example

The modifier_contenu() function in ecrire/inc/modifier.php is called
when an editorial object is modified, and takes care of calling the
pre_edition and post_edition pipelines, using the
sq1_updateq() function to update the collected data:

sql_updateq($spip_table_objet, $champs,
"$id_table_objet=$id", $serveur);

sql_version
The sqgl_version() function simply returns the version number of the
database manager.

It accepts 2 optional parameters:
1. $serveur,
2. S$option.

Usage:

$x = sql_version();

echo $x;

// depending on the type of server, we might see:
// for MysQL: 5.1.37-1ubuntu5.1

// for sqQLite2: 2.8.17

// for sqQLite3: 3.6.16

302

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/modifier.php

Creating your own plugins

Plugins are a convenient way to add extensions to SPIP. They usually
come as a compressed folder (in ZIP format) and have to be extracted
in the "plugins" directory (to be created if need be) or to be installed
directly by entering the compressed file’'s URL in the plugins
administration page in the private area.

303

The basic principle of plugins

Plugins add features or functions to SPIP, which might be a set of standardised
template files, a modification of existing functionality, creation of new editable
database objects,...

They have the advantage of enabling the management of tasks to be carried
out when they are installed or uninstalled, activated or deactivated. They can
also handle interdependencies with other plugins.

All of the SPIP folders and elements that can be overloaded can be recreated
in the folder of a plugin, in the same fashion as is done in your own private
"squelettes" folder. The essential difference is the existence of an XML file
which describes the plugin, uniformly named plugin.xm]l.

The minimal plugin.xml
The pTugin.xml file must be created in the root directory of your plugin. It
contains the description of the plugin and allows it to define certain actions.

The minimum content of the plugin file might be as follows (non-ASCII
characters are "escaped"):

<plugin>
<nom>Porte plume - Une barre d'outil pour bien
écrire</nom>
<auteur>Matthieu Marcillaud</auteur>
<1licence>GNU/GLP</Ticence>
<version>1.2.1</version>
<description>
"Porte plume" est une barre d'outil géniale pour
SPIP [...]
</description>
<etat>stable</etat>
<prefix>porte_plume</prefix>
</pTlugin>

These attributes are easy to understand, but are described below nonetheless:
* nom: name of the plugin,
* auteur: author(s) of the plugin,
» Ticence: license(s) for the plugin,

304

« version: version of the plugin. This detail is displayed in the private area
when requesting information about the plugin, and it also serves for
handling dependencies between plugins, when coupled with the prefix.
Another attribute not to be confused with this one is the 'version_base’
which is used when the plugin creates tables or fields in the database,

« description: pretty obvious! But note that this description and the
plugin name are often written using multilingual "idioms" as text
placeholders that will be replaced by the appropriate string for the current
language, defined in the "lang" files for the plugin.

* etat: the state of development of the plugin, perhaps "dev" (in
development), "test" (under testing) or stable

« prefix: a unique prefix distinguishing this plugin from any others. No
numerals are permitted here, and it must be in lower case.

plugin.xml, other common attributes

Options and functions

The files for the options and functions provided by the plugin are declared
directly within the plugin.xml file using the options and fonctions
attributes:

<options>porte_plume_options.php</options>
<fonctions>inc/barre_outils.php</fonctions>
<fonctions>autre_fichier.php</fonctions>

Several function files may be loaded if necessary by listing them in succession.

Documentation link
The T1ien attribute is used to provide an address for documentation about the

plugin:

<lien>http://documentation.magraine.net/-Porte-
Plume-</Tien>

Plugin icon
The 1 con attribute is used to specify an image to be used to visually represent
the plugin:

I <icon>imgs/logo-bugs.png</icon>

305

306

Handling dependencies

Plugins can indicate if they depend upon certain conditions in order for them
to work correctly. Two attributes are used to specify this: necessite and
utilise. In the first case, the dependency is a strong one: a plugin that
requires a resource (a certain version of SPIP or another particular plugin) can
not be activated if that resource is not present and active. An error will be
generated if we try to activate the plugin without that dependency being fulfilled.
In the second case, the dependency is weak, and the plugin can be activated
and perhaps even work even if that dependency is not fulfilled.

Necessite

<necessite id="prefixe" version="[version_min;version_max]"

/>

» 1id is the name of the plugin’s prefix, or "SPIP" for a direct dependency on
SPIP itself,

» version used optionally can indicate the mininum and/or maximum
version of a plugin. Square brackets are used to indicate that the version
as specified is included, parentheses to indicate that the version specified
is not included.

Utilise
"Utilise" is therefore used to declare optional dependencies, with exactly the
same syntax as for necessite.

utilise and necessite also therefore make it possible to override the files
for the plugin that they refer to (as they have priority in the file path).

Example

// requires at least SPIP 2.0

<necessite id="SPIP" version="[2.0;)" />

// requires SPIP < 2.0

<necessite id="SPIP" version="[;2.0)" />

// requires SPIP >= 2.0, and <= 2.1
<necessite id="SPIP" version="[2.0;2.1]" />

// requires spip_bonux at least at version 1.2
<necessite id="spip_bonux" version="[1.2;]" />

Certain plugins may indicate that it is possible to modify their
configurations if the CFG plugin is loaded (but without actually being an
indispensable requirement for the plugin to work):

// configuration plugin
<utilise id="cfg" version="[1.10.5;]1" />

Installing external libraries

Plpugins may also require external libraries that they are dependent upon
to be downloaded. This requires several things: a specific declaration in the
pTugin.xm] file, and the existence of a /11b directory that is write accessible
in the SPIP root directory, into which the library will be automatically (or
manually) loaded.

<necessite id="Tib:nom" src="address of the zip file" />

* nom specifies the name of the zip’s uncompressed folder
» srcis the address of the library archive in zip format

Example

A plugin called "loupe photo™ uses a javascript library that it installs as a
library (therefore outside of the plugin itself) in this manner:

<necessite id="Tib:tjpzoom" src="http://valid.tjp.hu/
tjpzoom/tjpzoom.zip" />

In the plugin, the names of the files that the plugin uses are listed like this:

|$tjp = find_in_path('1ib/tjpzoom/tjpzoom.js");

307

The "Open ID" plugin also uses a library that is external to the plugin. It
loads it in the following manner:

<necessite id="Tib:php-openid-2.1.2"
src="http://openidenabled.com/files/php-openid/packages/
php-openid-2.1.2.zip" />

And then uses that library as below:

// options
if (!defined('_DIR_LIB')) define('_DIR_LIB', _DIR_RACINE
'1ib/ ') ;
define('_DIR_OPENID_LIB', _DIR_LIB . 'php-
openid-2.1.2/");
// usage (somewhat more complicated!)
function init_auth_openid() {
// ...
$cwd = getcwd();
chdir(realpath(_DIR_OPENID_LIB));
require_once "Auth/OpenID/Consumer.php";
require_once "Auth/OpenID/FileStore.php";
require_once "Auth/OpenID/SReg.php";
chdir($cwd);
// ...

Using pipelines
To use the pipelines of SPIP or of a plugin, their usage must be explicitly
defined in the pTugin.xm] file:

<pipeline>
<nom>name_of_the_pipeline</nom>
<action>name of the function to Tload</action>
<inclure>directory/file.php</inclure>
</pipeline>

308

http://www.php.net/defined
http://www.php.net/define
http://www.php.net/define
http://www.php.net/getcwd
http://www.php.net/chdir
http://www.php.net/realpath
http://www.php.net/chdir

The action parameter is optional, and by default, it has the same name as
the pipeline. This declaration indicates a particular file to load when calling
the pipeline (determined by the inclure) and loading a function like
pluginprefix_action(). Note that the action parameter is only rarely
provided.

Several pipelines can be specified by listing them as demonstrated below:

<pipeline>
<nom>name_of_the_pipeline</nom>
<inclure>directory/file.php</inclure>
</pipeline>
<pipeline>
<nom>another_name</nom>
<inclure>directory/file.php</inclure>
</pipeline>

Example

The pipeline insert_head (p.164) adds content into the <head> section
of published pages. The "Messagerie" plugin (using "messagerie" as a
prefix) uses it for adding CSS styles:

<pipeline>
<nom>insert_head</nom>
<inclure>messagerie_pipelines.php</inclure>
</pipeline>

And in the messagerie_pipelines.php file:

function messagerie_insert_head($texte){

$texte .= '<link rel="stylesheet" type="text/css"
href=""'.find_in_path('habillage/messagerie.css').""
media="all" />'."\n";

return $texte;

}

309

310

Defining buttons
To add buttons into the private zone, all that is needed is to provide a bouton
attribute in the pTugin.xm1 files as follows:

<bouton id="identifier" parent="name of parent identifier">
<icone>icon path</icone>
<titre>title language description</titre>
<url>name of the exec</url>
<args>arguments passed</args>
</bouton>

Description:

» 1id holds the unique identifier of the button, which is used (amongst other
things) by sub-menus to indicate the name of their parent button. Quite
often, the name of the exec file (used to display the page) is the same as
the identifier name,

* parent: optional, used to specify that the button is a sub element of a
parent button. It therefore stores the identifier of the parent button. Absent
any value, it is a top level element that will be created (alongside the
"Launch pad" and "Site edit" buttons),

« 1cone: also optional, to specify the icon path,

+ titre: button text, may also be a placeholder "plugin:placeholdername”,

« url specifies the exec file name that is loaded when you click on the
button. If not indicated, it will be the identifier name that is used.

* args, optional, used to pass arguments to the URL (example:
<args>criteria=start</args>).

Authorisations

The buttons are displayed by default for all persons connecting to the private
zone. To change this configuration, specific authorisations must be created for
the buttons (and then use the authorisation pipeline to load the new plugin
authorisations):

function autoriser_identifiant_bouton_dist($faire, $type,
$id, $qui, $opt) {
return true; // or false

}

Example

Statistics for SPIP 2.1 — currently under development — will be in a

separate plugin. At present, it reproduces the buttons as below:

<pipeline>
<nom>autoriser</nom>
<inclure>stats_autoriser.php</inclure>

</pipeline>

<bouton 1id="statistiques_visites">
<icone>images/statistiques-48.png</icone>
<titre>icone_statistiques_visites</titre>

</bouton>

<bouton id='statistiques_repartition'’

parent="statistiques_visites'>
<icone>images/rubrique-24.gif</icone>
<titre>icone_repartition_visites</titre>

</bouton>

<bouton 1id="statistiques_lang'

parent="'statistiques_visites'>
<icone>images/langues-24.gif</icone>
<titre>onglet_repartition_lang</titre>

</bouton>

<bouton 1id="statistiques_referers'

parent="statistiques_visites'>
<icone>images/referers-24.gif</icone>
<titre>titre_liens_entrants</titre>

</bouton>

The authorisations are defined in a specific file:

<?php
function stats_autoriser(){}
// View the stats ? = all admins

$qui, $opt) {

'non')
AND ($qui['statut'] == 'Ominirezo'));
}

// Button authorisation

function autoriser_voirstats_dist($faire, $type, $id,

return (($GLOBALS['meta']["activer_statistiques"]

S

312

function
autoriser_statistiques_visites_bouton_dist($faire, $type,
$id, qui, Sopt) {

return autoriser('voirstats', $type, $id, $qui,
$opt);
}
function
autoriser_statistiques_repartition_bouton_dist($faire,
$type, $id, qui, Sopt) {

return autoriser('voirstats', $type, $id, $qui,
$opt);
}
function autoriser_statistiques_lang_bouton_dist($faire,
$type, $id, $qui, $opt) {

return ($GLOBALS['meta']['multi_articles'] == 'oui'

OR $GLOBALS['meta']['multi_rubriques'] ==
'oui')
AND autoriser('voirstats', $type, $id, $qui,

$opt);
}
function
autoriser_statistiques_referers_bouton_dist($faire,
$type, $id, $qui, $opt) {

return autoriser('voirstats', $type, $id, $qui,
$opt);
}

?>

Defining page tabs

Declaring the tabs for the exec pages in the private zone follows exactly the
same syntax as for the buttons. The name of the parent, however, is mandatory
here and corresponds to a parameter passed in the call function for the tab in
the exec file:

<onglet id="identifier' parent='tab bar identifier's>
<icone>1icon_path</icone>
<titre>placeholder title</titre>
<url>exec filename</url>
<args>arguments</args>
</onglet>

As for the buttons, if the URL is not provided, then the identifier name is used
as the name of the file to be loaded.

Authorisations
Again as with the buttons, an authorisation is used to manage whether the tab
is displayed or not.

function autoriser_identifiant_onglet_dist($faire, $type,
$id, $qui, Sopt) {
return true; // or false

}

Example

The "Champs Extras 2" (Extra fields v2) plugin adds a tab into the
configuration page, into the toolbar quite appropriately named
"configuration”. Here are the declarations used in its plugin.xmT file:

<pipeline>
<nom>autoriser</nom>
<inclure>inc/iextras_autoriser.php</inclure>
</pipeline>
<onglet id='iextras' parent='configuration's>
<icone>images/iextras-24.png</icone>
<titre>iextras:champs_extras</titre>
</onglet>

Authorisations are defined in the inc/iextras_autoriser.php file.
The tab only displays if the author is declared as a "webmestre
(webmaster)".

<?php
if (!defined("_ECRIRE_INC_VERSION")) return;
// function for the pipeline, nothing to do
function iextras_autoriser(){}
// authorisation declarations
function autoriser_iextras_onglet_dist($faire, $type,
$id, qui, Sopt) {
return autoriser('configurer', 'iextras', $id, $qui,
$opt);

313

http://www.php.net/defined

Sl4

}

function autoriser_iextras_configurer_dist($faire, $type,
$id, qui, Sopt) {

return autoriser('webmestre', $type, $id, $qui,
$opt);
}

?>

Finally, in the exec/iextras.php file, the toolbar is called as shown
below. The first is the identifier of the requested toolbar, the second is the
identifier of the current tab.

echo barre_onglets("configuration", "iextras");

__"\

Examples

A chapter to present a few practical examples of small scripts.

315

316

Adding a type of glossary
It is possible to add links to external glossaries from SPIP using the [?nom]
shortcut. By default, the links are made to wikipedia. To create a new glossary
link, there is the [?nom#typeNN] syntax available.

» type is a word for the glossary

* NN is an optional numeric identifier.

A simple function called glossaire_type() is used to return a particular
URL. 2 parameters are passed: the text and the identifier.

Example:

A link to the trac source files for SPIP 2.1:

<?php
@define('_URL_BROWSER_TRAC', 'http://trac.rezo.net/trac/spip/
browser/branches/spip-2.1/");
/;(—
* A link pointing to trac files
* [Pecrire/inc_version.php#trac]
* [Pecrire/inc_version.php#tracNNN] // NNN = 1ine number
*/
function glossaire_trac($texte, $id=0) {
return _URL_BROWSER_TRAC . $texte . ($id ? "#L'.$id :
"U)e
3

?>

Applying a default sort sequence to the loops

It is possible to sort the output of loops using the {par} criteria. The template
for the documentation you are currently reading has the same sorting criteria of
{par num titre, titre} forall ofits ARTICLES et RUBRIQUES loops.

Rather than repeat this in the code for all of the loops, we can apply it just once
for all the loops if there is no other sorting criteria specified for a given loop. To
do this, we use the pre_boucTe pipeline and insert an ORDER BY for the SQL
select queries.

Plugin.xml:

http://www.php.net/define

<pipeline>
<nom>pre_bhoucle</nom>
<inclure>documentation_pipelines.php</inclure>
</pipeline>

documentation_pipelines.php:

function documentation_pre_boucle($boucle){
// ARTICLES, SECTIONS : {par num titre, titre}
if (in_array($boucle->type_requete,
array('rubriques', 'articles'))
AND !$boucle->order) {
$boucle->select[] = "0+" . $boucle->id_table .
".titre AS autonum";
$boucle->order([] "'autonum'";
$boucle->order[] = """ . $boucle->id_table .
".titre'";
}
return $boucle;

Doing this means that the loops are sorted by default:

// auto sort {par num titre, titre} :
<BOUCLE_al(ARTICLES){id_rubrique}>...

// different sort:
<BOUCLE_a2 (ARTICLES) {id_rubrique}{!par date}-...

A few details

The pipeline receives a "boucle" (loop) type PHP object that may have various
values. The loop notably has some select and order variables which handle
what will be entered into the SELECT and ORDER BY clauses of the generated
SQL query. The SQL table name (spip_articles or spip_rubriques in
the current case) is stored in $boucle->id_table.

When we assign a number within the titles of SPIP articles (which do not have
any ranking field in their tables even though the code has already been
envisaged to handle it!), we write it like this: "10. Title" (number point space
Title). In order for SQL to be able to easily sort by number, all that is needed
is to force a numerical evaluation of the field (which is then converted into a
number). This is why the code "O+titre AS autonum", which creates an alias

37

http://www.php.net/in_array
http://www.php.net/array

318

column called autonum holding this numeric calculation value in it, is then able
to be used as a sort column in the ORDER BY clause.

Consideration of new fields in table searches

If you have created a new field in one of the SPIP tables, it will not be
considered by default by the search functions. It must also be declared
explicitly for that to occur. The rechercher_liste_des_champs (p.122) pipeline
has what you need called from the ecrire/inc/rechercher.php file.

It accepts a parameter table listing table/field = coefficient couples,
where the coefficient is a number specifying the number of points to assign for
a successful search in that field on that table. The higher the coefficient, the
more points that field will credit to a total score for any searches that match that
field’s contents.

Example

You have a field "town" in the SQL table "spip_articles" that you would like
to include in searches - it must be declared as an additional field in the
pipeline:

function
pluginprefix_rechercher_Tliste_des_champs($tables){
$tables['article']["town'] = 3;
return $tables;

Display an authoring form, if authorised

There are special #AUTORISER tags that make it possible to manage access to
certain content and/or certain forms on a fine-grained scale. As shown below,
if the visitor has the rights to modify the article, then a form can be displayed to
edit that article, which, once validated, will return to the article page in question:

[(#AUTORISER{modifier, article, #ID_ARTICLE})
#FORMULAIRE_EDITER_ARTICLE{#ID_ARTICLE, #ID_RUBRIQUE,
#URL_ARTICLE}

http://trac.rezo.net/trac/spip/browser/spip/ecrire/inc/rechercher.php

Modifying all of your templates in one hit

Thanks to some special hooks, it is possible to use a single simple operation on
a complete set of template files to modify the behaviour of a particular loop or
type of loop, just by using the pre_boucle (p.171) pipeline. For example, every
RUBRIQUES loop, regardless of which template file it is stored in, can have
sector 8 omitted from its search criteria:

$GLOBALS['spip_pipeline']['pre_boucle'] .= '|hide_a_sector';
function hide_a_sector($boucle){
if ($boucle->type_requete == 'rubriques') {
$secteur = $boucle->id_table . '.id_secteur';
$boucle->where[] = array("'!="", "'$secteur'", "8");
3

return S$boucle;

}

Note that the plugin "Accés Restreint" also offers this function to restrict access
to specific content.

319

http://www.php.net/array

Glossary

Definitions of some of the key technical terms used in the
documentation.

321

322

AJAX

The term AJAX, an acronym for "Asynchronous JavaScript and XML", is used
to describe a collection of technologies used to create asynchronous client-
server interactions.

These constructions, which make it possible to only request a partial page
update from the server (or partial element update), can significantly reduce the
data volumes that need to be transmitted and often make an application appear
more responsive to its users.

Argument

In programming, the term "argument" is used for content passed when making
a function or procedure call. Functions can use several arguments. Arguments
can be the results of other calculations. We differentiate "arguments” (the input
data) from "parameters" (what the function receives). In PHP we have:

function_name('argument', $argument, ...);
function_name($x + 4, $y * 2); // 2 calculated arguments are
sent.

And in SPIP, for tags and filters:

#TAG{argument, argument, ...}
[(#TAG|filter{argument, argument})]

Cache files

A cache is a store of files that is used to accelerate data access. There
are caches used internally in almost every part of a computer: in the
microprocessors, on hard drives, in software, in PHP functions, etc. They make
it possible for a given piece of data to be retrieved or calculated faster in the
event that it is requested more than just a single time, whether it be a highly
volatile storage system (like RAM memory), or a more permanent resource (like
a hard drive).

http://en.wikipedia.org/wiki/AJAX

A cache often has a limited life span, as for example, the time that it takes for
a programme to run, or the time required to process a PHP function call. A
validity period can also be assigned when the storage device delivers data that
is more persistent - a web page can thereby tell a browser programme for how
many hours a page will remain valid if that page is being held in the browser’s
local cache.

Parameter

The "parameters" of a function, that is, what is received when the function
is called, are described in the declaration of that function. This declaration
may specify the type of value expected (integer, table, character string...), a
default value, and most importantly the name of the variable where the usable
parameter is stored within the function’s code. In PHP we have:

function name($paraml, $param2=0){}

This "name" function will receive two "parameters" when it is called, stored in
the local variables $paraml and $param2 (which will have a value of 0 by
default). We may then call this particular function with either 1 or 2 "arguments™:

name('Extra'); // param2 will equal 0
name('Extra', 19);

Pipeline

The term pipeline is used within SPIP in the UNIX sense of the word. The
pipeline executes a series of functions for which the result of one such function
is used as input for the next. In this way, each function in a pipeline can use the
data that are passed to it, modify them, use them, and return them. The results
then act as arguments for the next function, and the next and so on until the
last such function.

When calling a pipeline, the first function is very often passed data, or at least
a default value. The results of the chaining of the various functions is then used
or displayed depending on the situation at hand.

323

http://en.wikipedia.org/wiki/Pipeline_%28Unix%29

324

Certain particular calls on pipelines in SPIP are to be considered as triggers,
in the sense that they simply declare an event, but do not expect any result to
be returned from the various functions that the pipeline will call. Most of these
triggers have a name that uses the prefix trig_.

Recursion

In programming, we use the term "recursion" for an algorithm (some computer
code) that is able to call itself. We also speak of "self-referencing". PHP
functions can call themselves recursively, like the example below which adds
up the first X integers (just as an example, as this can be computed faster with
x*(x+1) /2).

// calculation of : x + (x-1) + ... + 3 +2 + 1
function sum($x) {

if ($x <= 0) return 0;

return $x + sum($x-1);

}
// call it
$s = sum(8);

SPIP also allows you to write recursive loops (p.19) within the templates.

Index
Symbols

! (Operators) 51

1= (Operators) 49, 51, 56
== (Operators) 50

!IN (Operators) 50

* (tags) 29

2.1 (SPIP version) 38, 90, 95, 96,

125,127,129, 138, 143, 144,
155, 166, 167, 168, 168, 172,
177, 180, 222, 267

< (Operators) 49, 56

<= (Operators) 49, 56

= (Operators) 49

== (Operators) 50, 51, 56, 233
> (Operators) 49, 56

>= (Operators) 49, 56

? (Filters) 58

Acces restreint (Plugins) 238,
319

accueil_encours (Pipelines) 123
accueil_gadget (Pipelines) 123

accueil_informations (Pipelines)
124

Actions 93, 201, 203

ACTION_FORMULAIRE (Tags)
230

affdate (Filters) 17

affichage_entetes_final
(Pipelines) 125

affichage_final (Pipelines) 126
afficher_config_objet (Pipelines)
127

afficher_contenu_objet
(Pipelines) 128

afficher_fiche_objet (Pipelines)
129

affiche_droite (Pipelines) 130
affiche_enfants (Pipelines) 131
affiche_gauche (Pipelines) 131
affiche_hierarchie (Pipelines) 132
affiche_milieu (Pipelines) 133
Agenda (Plugins) 136, 146, 153
AJAX 62, 62, 63, 244, 322

ajax (Include parameters) 62, 63
ajouter_boutons (Pipelines) 134
ajouter_onglets (Pipelines) 136
alertes_auteur (Pipelines) 138
Amis (Plugins) 242
ANCRE_PAGINATION (Tags) 62
Arguments 322, 323

ARRAY (Tags) 118

ARTICLES (Loops) 18, 26, 35,
38, 48, 52, 53, 62, 63, 72, 73, 82

Asterisk (tags) 29
attribut_html (Filters) 55
AUTEURS (Loops) 81, 82

AUTEURS_ARTICLES (Loops)
82

AUTEURS_ELARGIS (Loops) 81

Authorisations 134, 136, 139,
200, 201, 238

Automatic processes 27, 29

autoriser (PHP functions) 139,
141, 198, 199, 200, 238, 309,
312

autoriser (Pipelines) 139, 200
AUTORISER (Tags) 31, 198, 200

325

326

Backups 167

barre_onglets (PHP functions)
136, 312

Bisous (Plugins) 131, 145

body_prive (Pipelines) 141
boite_infos (Pipelines) 141
Bonux (Plugins) 234, 279

Buttons 134, 309

Cache 91, 96, 157, 220, 220,
221, 221, 223, 223, 224, 225,
322

CACHE (Tags) 31, 225
Cache Cool (Plugins) 220, 224

calculer_rubriques_publiees
(PHP functions) 273

CFG (Plugins) 241, 305

Champs Extras 2 (Plugins) 113,
312

charger_fonction (PHP functions)
107, 133, 222

Charset 94
Chats (Plugins) 146
CHEMIN (Tags) 32, 222

commencer_page (PHP
functions) 141

Composition (Plugins) 237, 261
Compresseur (Plugins) 144, 223

compter_contributions_auteur
(Pipelines) 143

CONDITION (Loops) 234
CONFIG (Tags) 39

config (PHP functions) 144
config/connect.php (Files) 83, 84
Configurations 94, 144

configurer_liste_metas
(Pipelines) 144

connect (Include parameters) 85
Connector file 83, 84, 85, 221

Contact avancé (Plugins) 259,
273

Context 60, 110

corriger_typo (PHP functions)
170, 174

couper (Filters) 32, 55
Crayons (Plugins) 33, 164
creer_base (PHP functions) 254

Criteria 48, 48, 48, 49, 51, 52,
53, 80

Cron 179, 227, 227
CSS 163, 223

CVT 160, 162, 229, 237, 238,
238, 240, 241, 242

CVT form loading 160, 229, 234,
238, 238, 240, 241

CVT form processing 229, 234,
243, 244

CVT form verification 162, 229,
231, 242

Databases 83, 83, 83, 94, 96
DATE (Tags) 17

declarer_tables_auxiliaires
(Pipelines) 145, 254

declarer_tables_interfaces
(Pipelines) 80, 146

declarer_tables_objets_surnoms
(Pipelines) 152

declarer_tables_principales
(Pipelines) 153, 254

declarer_url_objets (Pipelines)
155

Declaring an SQL table 145, 153

definir_session (Pipelines) 157

delete_statistiques (Pipelines)
159

delete_tables (Pipelines) 159

DESCRIPTIF_SITE_SPIP (Tags)
32

direction_css (Filters) 32
Documentation (Plugins) 173
DOCUMENTS (Loops) 16, 50, 80

dossier_squelettes (Global
variables) 102, 104

Dynamic tags 183, 183, 184,
185, 187

ecrire/inc_version.php (Files)
112, 117

ecrire_meta (PHP functions) 221
EDIT (Tags) 33

editer_contenu_formulaire_cfg
(Pipelines) 241

editer_contenu_objet (Pipelines)
159, 241

effacer_meta (PHP functions)
221

Email 242
email_valide (PHP functions) 242

Enluminures Typographiques
(Plugins) 174

entites_html (Filters) 33

ENV (Tags) 24, 33, 60, 63, 71,
73, 230, 233

env (Include parameters) 44, 60,
62

Environment 24, 60

envoyer_mail+ (PHP functions)
107

Error message 231, 240
Errors 231

et (Filters) 58

EVAL (Tags) 34
EVENEMENTS (Loops) 153
exclus (Criteria) 73
EXPOSE (Tags) 35
Expresso (Plugins) 220
extension (Criteria) 50
External libraries 91, 307

FaceBook Login (Plugins) 157,
176

Fastcache (Plugins) 220
FICHIER (Tags) 16
Filepaths 32, 104, 222
Filters 55, 55, 56, 57, 58, 68

Filtres Images et Couleurs
(Plugins) 223

find_all_in_path (PHP functions)
108

find_in_path (PHP functions)
108, 126, 178, 222

forcer_lang (Global variables) 75,
77

Formidable (Plugins) 190

Forms 159, 160, 162, 229, 230,
230, 231, 232, 233, 234, 237,
243, 246, 249

Forms & Tables (Plugins) 146,
157

formulaires_xxx_charger (PHP
functions) 160, 238

formulaires_xxx_traiter (PHP
functions) 243

FORMULAIRE_ (Tags) 186, 230,
237

formulaire_charger (Pipelines)
160, 241

formulaire_traiter (Pipelines) 161

327

328

formulaire_verifier (Pipelines)
162

Forum (Plugins) 127, 129, 139,
143, 168, 172, 177, 180

generer_action_auteur (PHP
functions) 203

generer_url_action (PHP
functions) 141

generer_url_ecrire (PHP
functions) 123, 123, 136

generer_url_entite (PHP
functions) 155

Geéographie (Plugins) 167, 270
GET (Tags) 36, 45, 231, 234
Grappes (Plugins) 155, 287
GROUPES_MOTS (Loops) 171

header_prive (Pipelines) 163
hello_world (PHP functions) 103

icone_horizontale (PHP
functions) 123, 141

Idioms (Compiler) 65
idx_lang (Global variables) 65
id_parent (Criteria) 19
id_rubrique (Criteria) 48

id_table_objet (PHP functions)
152, 221

Image processing 223
image_reduire (Filters) 16
IN (Operators) 50

Includes 60, 60, 60, 62, 63

include_spip (PHP functions)
109, 124, 132, 222, 238

INCLURE 60, 60, 63, 71, 85
INCLURE (Tags) 37, 85
Inscription 2 (Plugins) 81

insert_article (PHP functions)
283

INSERT_HEAD (Tags) 38, 38,
164, 166, 166

insert_head (Pipelines) 38, 164,
308

INSERT_HEAD_CSS (Tags) 38,
166

insert_head_css (Pipelines) 38,
166

Installation 95, 254
INTRODUCTION (Tags) 38

JavaScript 99, 163, 166, 223
Jeux (Plugins) 152

Job Queue (Plugins) 277
Joins 80, 80, 80, 81, 82, 146
JQuery 99, 166
jquery_plugins (Pipelines) 38,
166

lang (Include parameters) 71
LANG (Tags) 39, 72, 73

lang (Criteria) 73
lang/nom_xx.php (Files) 65, 66
Language 71,72, 73,75, 77

Language codes 65, 65, 65, 66,
68, 68, 95

LANG_DIR (Tags) 40 multi 69

LESAUTEURS (Tags) 41 Multilinguism 40, 65, 65, 65, 69,
Licence (Plugins) 161 n.m,n.n

lire_config (PHP functions) 161

lire_metas (PHP functions) 221

lister_tables_noerase (Pipelines) N

167 No Spam (Plugins) 160
lister_tables_noexport (Pipelines) NoCache (Plugins) 225

167
)) o nombre_de_logs (Global
lister_tables_noimport (Pipelines) variables) 112

168

NOM_SITE_SPIP (Tags) 23
LOGIN_PRIVE (Tags) 183 i

non (Filters) 58

LOGIN_PUBLIC (Tags) 184) .
L 07 Notations (Plugins) 163, 264
090 NOTES (Tags) 42
LOGO_SITE_SPIP (Tags) 36 L
Notifications 95

Loop 13, 16, 16, 17, 18, 19, 25,
26, 80, 187, 319

Loupe photo (Plugins) 307

o)

objet_type (PHP functions) 152

ODT vers SPIP (Plugins) 130
maj_tables (PHP functions) 254, onAjaxLoad (JS functions) 164
261 Open Layers (Plugins) 163
match (Filters) 57 OpenlD (Plugins) 159, 162, 307
Mémoisation (Plugins) 220 Operators 49, 50, 50, 51
Menus (Plugins) 261 optimiser_base_disparus
MENU_LANG (Tags) 71, 75, 77 (Pipelines) 168
Messagerie (Plugins) 308 origine_traduction (Criteria) 73
mes_fonctions.php (Files) 103, ou (Filters) 58
105 oui (Filters) 46, 56, 58, 233
mes_options.php (Files) 102, 164 Overloading 66, 105, 105, 200
meta (Global variables) 123, 221
minipres (PHP functions) 109
MODELE (Tags) 41 >

Models 99 Page headers 125

modifier_contenu (PHP
functions) 301 PAGINATION (Tags) 62

inati iteria) 62
Mots Techniques (Plugins) 171 pagination (Criteria) 6

329

330

Paginations 62
par (Criteria) 48, 73, 287

Parameters 60, 68, 237, 322,
323

parametre_url (Filters) 63

parametre_url (PHP functions)
246

Photo metadata (Plugins) 128
PIPELINE (Tags) 118

pipeline (PHP functions) 118,
118

Pipelines 117, 118, 118, 308,
323

Plugin dependencies 305, 307

plugin.xml (Files) 134, 136, 221,
304, 304, 305, 305, 307, 308,
309, 312

Plugins 91, 96, 102, 221, 303,
304

Polyglot (Compiler) 69, 287
Polyhiérarchie (Plugins) 132, 284
Porte Plume (Plugins) 164, 166
post_typo (Pipelines) 170
Prévisualisation (Plugins) 141
pre_boucle (Pipelines) 171, 319

pre_insertion (Pipelines) 172,
283

pre_liens (Pipelines) 173
pre_typo (Pipelines) 174

Private zone 190

propre (Filters) 29

propre (PHP functions) 132, 174

purger_repertoire (PHP
functions) 179

quota_cache (Global variables)
225

racine (Criteria) 18

rechercher_liste_des_champs
(Pipelines) 122, 318

rechercher_liste_des_jointures
(Pipelines) 175

recuperer_fond (PHP functions)
108, 110, 130, 131, 133, 159,
176, 222

recuperer_fond (Pipelines) 176
recuperer_page (PHP functions)
246

Recursion 19, 324

redirige_action_auteur (PHP
functions) 203

redirige_action_post (PHP
functions) 203

refuser_traiter_formulaire_ajax
(PHP functions) 244

Regular expression 50, 51, 57
REM (Tags) 44

replace (Filters) 57

Restores 167, 168

RUBRIQUES (Loops) 18, 19, 26,
40, 50, 72, 319

rubrique_encours (Pipelines) 177

Saisies (Plugins) 246, 249
Searching 122, 175

securiser_action (PHP functions)
203, 240

Security 201, 203

Selecting a template 178
Sélection d’articles (Plugins) 133
SELF (Tags) 44, 63

self (Include parameters) 44
Sending mail 107

SESSION (Tags) 44
Sessions 44, 45, 157
SESSION_SET (Tags) 45
SET (Tags) 36, 45, 231, 234

set_request (PHP functions) 75,
246

sinon (Filters) 58
social_login_links (Pipelines) 176
SOUSTITRE (Tags) 23

SPIP Clear (Plugins) 178

spip_connect_db (PHP functions)
83

SPIP_CRON (Tags) 227

spip_lang_rtl (Global variables)
141

spip_log (PHP functions) 112
SPIP_PATH (Constants) 104

spip_pipeline (Global variables)
118, 164, 319

spip_session (PHP functions)
157

spip_setcookie (PHP functions)

SQL abstraction 254, 254
SQL query 25
SQL table 25, 82

sql_allfetsel (PHP functions) 259,
275

sql_alltable (PHP functions) 298
sql_alter (PHP functions) 261
sql_count (PHP functions) 263
sql_countsel (PHP functions) 264
sql_create (PHP functions) 265

sql_create_base (PHP functions)
267

sql_create_view (PHP functions)
267

sql_date_proche (PHP functions)
269

sql_delete (PHP functions) 269

sql_drop_table (PHP functions)
270

sql_drop_view (PHP functions)
271

sql_errno (PHP functions) 272
sql_error (PHP functions) 272
sql_explain (PHP functions) 272

sql_fetch (PHP functions) 273,
293

sql_fetch_all (PHP functions) 275
sql_fetsel (PHP functions) 276
sql_free (PHP functions) 277

sql_getfetsel (PHP functions)
178, 277

sql_get_select (PHP functions)
267, 279

sql_hex (PHP functions) 280
sql_in (PHP functions) 279, 281
sql_insert (PHP functions) 282

sql_insertq (PHP functions) 282,
283

sql_insertq_multi (PHP functions)
284

sql_in_select (PHP functions)
286

sql_listdbs (PHP functions) 287
sql_multi (PHP functions) 287
sql_optimize (PHP functions) 288
sql_query (PHP functions) 289
sql_quote (PHP functions) 289
sql_repair (PHP functions) 291
sql_replace (PHP functions) 291

sql_replace_multi (PHP
functions) 292

sql_seek (PHP functions) 293

sql_select (PHP functions) 124,
273, 279, 293

sql_selectdb (PHP functions) 296

33

332

sql_serveur (PHP functions) 297

sql_showbase (PHP functions)
298

sql_showtable (PHP functions)
299

sql_update (PHP functions) 300

sql_updateq (PHP functions)
161, 301

sqgl_version (PHP functions) 302
Statistics 125, 159

Statistics (Plugins) 125
Statistiques (Plugins) 133, 309
styliser (Pipelines) 178

suivre_invalideur (PHP functions)

220

Syntax 15, 16, 17, 23, 26, 48, 55,
65, 66, 68, 69, 82, 83, 118

tables_auxiliaires (Global
variables) 145

tables_jointures (Global
variables) 80

tables_principales (Global
variables) 153

table_des_traitements (Global
variables) 27, 146

table_objet (PHP functions) 152,
221

table_objet_sql (PHP functions)
113, 152, 221

table_valeur (Filters) 231, 234
Tabs 136, 312

taches_generales_cron
(Pipelines) 179, 227

Tag 13, 23, 24, 25, 26, 27, 27,
30, 93, 186, 187

taille_des_logs (Global variables)

112

\

Target (Plugins) 126
Template comments 44
Templates 15, 102

test_espace_prive (PHP
functions) 173

textebrut (Filters) 32

The compiler 96

Thélia (Plugins) 134

Tickets (Plugins) 68, 281
titre_mot (Criteria) 80

TradRub (Plugins) 261
traduction (Criteria) 73
traduire_nom_langue (Filters) 73

traiter_raccourcis (PHP
functions) 42

Translations 65, 71

trig_supprimer_objets_lies
(Pipelines) 180

trouver_table (PHP functions)
113, 221, 299

typo (PHP functions) 96, 174
Typo Guillemets (Plugins) 170
Typography 96

URL 97, 155
URL_ (Tags) 155

URL_ACTION_AUTEUR (Tags)
204

URL_ARTICLE (Tags) 63
URL_SITE_SPIP (Tags) 23

utiliser_langue_visiteur (PHP
functions) 75

VAL (Tags) 46

_INTERDIRE_COMPACTE_HEAD_ECRIRE
(Constants) 223

_L (PHP functions) 68
_MAX_LOG (Constants) 112

_META_CACHE_TIME
(Constants) 221

Wordpress 83

xou (Filters) 58 _NO_CACHE (Constants) 225
XSPF (Plugins) 126 _request (PHP functions) 115,
242

_T (PHP functions) 68, 123, 242

_TRAITEMENT_RACCOURCIS
(Constants) 27, 146

_DIR_DB (Constants) 267 TRAITEMENT TYPO
_dist (functions) 105 (Constants) 27, 146

_DUREE_CACHE_DEFAUT
(Constants) 31, 220, 225

333

334

Table of contents

Prefaceo 7
Notes about this documentation..............ccocoiiiiin, 9
INtrOdUCHIONoiiiii e 11
What iS SPIP? ... 12
What can SPIP be used for?........ccccoooiiiiiiiiieeeee 12
Requirements and basic description.............cccccevinieen. 12
The templates (aka squelettes)........ccocvvvereiiiiiiieieninns 12
QUICK OVEIVIBW ..o 13
The templates ... 15
LOOPS ittt 16
The syntax of l00PS......c.c.cooiiiiiiiiiec 16

The complete syntax of I00PSccoveviiiiiiiieennnen. 17

Nested I00PSccuviiiiiiiiiie e 18
RECUISIVE 100PS ...vvvvieiiiiiiiee e 19

Loops with missing tables.............cccccoooiiiiiininne 22

JLIE= 1 13RS 23
Tag syntax, the definitive versioncc.cceeeee. 23

The #ENV environmentccccoiiiiiiiiiiiiii, 24

The contents of loops (boucles)...........cccceevieenee. 25
Contents of parent 100ps.........ccceeviiiiiiiiiiieiieee 26
Predefined tags.........cccooiiiiiiiiiieeee e 27

GENENC TAGS -eivveeiie et 27
Automatic tag proCessescccvvveveeviciivieeeeriiiieenn. 27
Interrupting the automatic tag processes................. 29

Useful tags to KNOW........cooiiiiiiieiiiiiee e 30
HAUTORISERooiiiiiiiiicicce e 31
HCACHE ..o 31
HCHEMIN ... 32
#DESCRIPTIF_SITE_SPIP ...cccviiiiiiiiiiieieeee e 32

HEDIT e 33

HENV oo 33

HEVAL ..o 34
HEXPOSE ...ttt 35

HGET e 36
HINCLURE ... 37
HINSERT_HEAD......coiiiiiiiieeeeee e 38
#INSERT_HEAD_CSS ... 38
H#INTRODUCTION ..ot 38

HLANG ..o 39

335

336

HLANG _DIR....oooiii e 40

H#LESAUTEURS ... 41
HMODELE ... 41
HNOTES ... 42
HREM ..o 44
HSELF oo 44
H#SESSION ... 44
HSESSION_SET ... 45
S ET i 45
VAL oo 46
LOOPS Criteria.....cuiieiieiiiiee e 48
Criteria SyNtaX ... 48
Criteria ShortCuts............cooiiiiiii 48
Simple 0perators..........ccccovviiiiiiieiiie e 49
The IN operator........ccvveieeeiciiie e 50
The == 0perator.........cccceiiieiiie e 50
The "I" Operator.......ccvviiie e 51
Optional Criteria...........cceeiiiieiieee e 52
Optional criteria with operators.............cccecvveveeeiennns 53
Tag fiIters ..o 55
Filter syntaxcceeveeiiiiie e 55
Filters derived from PHP classes............ccccccceeeieen. 56
Comparison filters ..o 56
Search and replace filtersccocovveeeeiiiiiieeeecens 57
TeStfilters ..o 58
INCIUAES ... 60
Includes within the templates.............ccccocoiiiiiie 60
Passing parameters to includes...........cccccveeeeennneeen. 60
AJAX e 62
AJAX paginationsccceeveiiiie e 62
AJAXTINKS .. 63
Linguistic elementsccocoiiiiiiiiiii 65
The syntax of language strings.........ccccoooieeiieenne. 65
Language files ..o 65
Using the language codesccccceeiiiiiiieennieeene 66
The complete syntax of language codes 68
Using language codes in PHPccccoveieeinnennn. 68
Polyglots (multi tags)ccceveiiieiiiiiieiiceee 69
MUltIliNQUalISM ...ooeeiiie e 71
Multilingual possibilitiesccccoiiiiiie 71
The environment’s [anguageccccceveeiviiiieeeenn. 71

The language of an objectcccoocvieeiiiiiiieeeee 72
Special language criteriacccoooiiiiiieiiieeiee 73
Forcing the language of the visitor’s choice............. 75
Choosing the navigation languagecccccoceee... 77
Forcing a change in the interface language............. 78
SQL joints between tablesccccooiiiiiiiiis
Automatic JOINScoccviiiiiiii
Explicit join declarationscccccceeiviiiiene e,
Automating JoiNScoociiiiiiiii e
FOrcing JOINS ...ocvveeeee e
Accessing multiple databases............cccoociiiiiiiiie
Declaring another database............ccccocoveiininne.n.
Accessing a declared database.............cccccceeeiieeen.
The "connect" URL parameter..........c.ccooveeviieennnn.
Inclure with a connector parameter

PIUGINS ..
SQUEIELES ...eiie e

(1o o[(= TP
ecrire/action
ecrire/auth ...
ecrire/baliSecoooiiiiieii e
ECHIE/DASE ..vvveie e
ecrire/charsetsoooovveeiiciieeeeee e
ecrire/configurationccceviii i
ECIIEIEXEC v et
ecrire/genie
ecrire/inc
ecrire/install
ECTIE/IANG ..t
ECIIIE/MA] c.eviiiee et

337

ecrire/notifications...........cccoeeviiiiiiiiiiiieeeeee 95

€Crire/PlUGiNSooiiiiiiiiie e 96
eCrire/publiCocciiiiiiii 96

(Yo Y =Y SRR 96
ecrire/typographiecccoeeiiiiiiecee e 96
ECTIIEIUIS ..o 97
ECTITe/XMI .eiiiiiei e 97
PV ettt e e e e e e an 98
PHVE/CONTENU ... 98
PHVE/EAITET ..o 98
PHVE/EXEC .ot 98
Prive/formulairesc.coovveieiiieiic e 98
PrVE/IMAGES ...eeiiiieiiiiie et 98
PrVE/INTOS ..o 99
Prive/JavasCript........cooeiiiiiie e 99
Prive/MOdElESoooeiiiiiiieiic e 99
PHVE/ISS ..vviiiee ittt e e e e e e enaaaea e 99
PHVE/STALS ..o 99
prive/transmettreccccvveeeiiciiiee e 100
Prive/VIgNEes........oooviiiiiiiieric e 100
INAEX .o 325
Table of contents ..o 335
Extending SPIPoooiiiiii e 101
INtrodUCHION ... 102
Templates or plug-inS?cccooviiieniiiiee e 102
Declaring optionscoociiiiiiiiiieeeee e 102
Declaring new functions...........cccccceveeiieiiicnncenen. 103

The concept of pathocoovviiiiiieiiiee e 104
Overriding @ file........occveiiiiiiiieic e 105
Overloading a _dist functionc.ccccoviinienns 105
Some functions you should KNOwc.ccceeiiinannens. 107
charger_fonctionccooiiiiiiinii e, 107
find_all_in_path........ccooeeiiiii e, 108
find_in_pathcoooii e 108
INCIUAE _SPIP .oii i 109
recuperer_fond ... iieiiiii e 110
SPIP_10G et 112
trouver_table ... 113
PEQUEST . 115
PiIipelineseeeiiiiee 117
Definitionc.eeiiieeieie 117

336

List of current pipelines.........cccccvveviiiiiiieneenin.
Declaring a new pipeline..........ccccveiiniiiieiieniiinnn.
Contextual pipelinesccccocviiiiiiiniiiiieee,
Pipeline details.........ccccceevviiiieniciinns

rechercher_liste_des_champs
ACCUEIL_ENCOUISuvviiiee et
accueil_gadget.........cocoiiiiiiiii
accueil_informationscccccceeviiiiiiie i
affichage_entetes_final............ccccooiiiiiiin
affichage_final...........ccoovii s
afficher_config_objet..........ccccooiiiiiiiiii
afficher_contenu_objetcccoiiiiiiiini
afficher_fiche_objet
affiche_droiteccocoiiiiii
affiche_enfantscccccoovii e,
affiche_gauchecccooeiiiiii,
affiche_hierarchieccccoooviiiiiii e
affiche_milieu ...
ajouter_boutonscccceeiiiiie e
ajouter_onglets ...
alertes_auteur........covveiiiiiiie e
autoriser.......ccccevvciveeeenn.
base_admin_repair
DOAY_PrIVE ..
boite_iNfOS ...ooeiiiieii e
calculer_rubriqUEScoovuviieeeieieie e
compter_contributions_auteur
configurer_liste_metas.......cccccceeeviiieiceiiiie e
declarer_tables_auxiliairescccocoveeeiiiiinnnen.
declarer_tables_interfaces..........ccccocovvviiiniinnenn.
declarer_tables_objets_surnoms...........c.cccoceeeee. 152
declarer_tables_principalescccoccniviiiiinenns 153
declarer_url_objets ... 155
definir_Session ..o 157
delete_statistiquesccceeviviieeeiic e 159
delete_tables ... 159
editer_contenu_objet ... 159
formulaire_charger
formulaire_traiter..........ccccoviiiiiii e
formulaire_verifier ...
header_Prive......ccoeei oo

339

340

insert_head........ccccceiiiiiiiii e
iNsert_head CSS......ccccuveeeiiiiiiiiiiieeeeee e
JAUErY_PIUGINS ...t
lister_tables noerase......

lister_tables_noexport
lister_tables_noimport

optimiser_base_disparus...........ccccceecieiiciiiiinenne 168
POSE_EYPO e 170
Pre_DbOUCIE ... 171
Pre_iNSertioncooveviiiiiie e 172
1 ES I 1= U 173
Pre_tYPO ..ttt 174
rechercher_liste_des_jointures...........cccveeriinnnn. 175
recuperer_fond ... 176
FUbFIQUE_ENCOUIScceiiiiieee e 177
SEYIISEr .. 178
taches_generales _Cronccccceevvvvieeceeiiienneennn 179
trig_supprimer_objets_lies........ccccooiiiiiiiiiiinnnen. 180
..and therestofthem.........ccccooiiiiiiniiiis 181
TGS - 183
Dynamic tagsccovveeeiiiiiiiee e 183
The balise. NAME_dist function.............c..ccccuvvee... 183
The balise_ NAME_stat() functionccccco.. 184
The balise_ NAME_dyn() functionc.ccccceeen. 185
GENENC TAGS «oivveeeieiieeeie et 186
Retrieving the object and id_object........................ 187
Creating pages in the private zoneccccceveeennn. 190
The contents of a (template) exec file.................... 190
The contents of a (PHP) exec file
The information panel..........cccccveeviiee e
INAEX e
Table of contentsoccviiiiiiiii e
Functionalities ...
AULhOFISAtIONS ..o
The "autoriser" librarycccceiiiiiiieiieeeee
The #AUTORISER tag......cccccvveiiiieiiieecieeeeeee
Processes in the autoriser() function 199
Creating or overloading the authorisations............ 200
Secured actionsccceeiiiieiiiie e 201
How secured actions Work...........cccceeviieieieeniiinnnn. 202
Secured actions’ predefined functions................... 203

Action URLs in atemplatecccccoveeviiiienececnnen. 204

ActionNs and ProCESSES......cuuuiveeeiiiiiieeeeciiieee e eeeieeae e 205
The contents of an action file............cccccoeoiiiiee 205
The verifications..........ooooiiiiii e 205
THE PrOCESSES ..ot 206
Automatic redirectionsccoeciiiiieniieiee 207
editer_objet actions............cccoooiiiii 208

Authenticationscccoiiiiiiii e 209
The contents of an auth fileccccociiiiiiie 209

The COMPIIET ..o 210
The syntax of the templates.............cccceeiiiiiniee 210
Analysing a templateccccceiiiiiiiie 211
The assembly processescoccceeieeeiiieeeiineene 215
Determining the cache............c.ccooiiine. 216
Parameters determining the name of the
template ..o 217
Determining the template fileccccccooviiiiveerinne. 217
A clean composition
The compilationcceeeeiiiiiie e

The CaChe ...coooii e
The template cache
The page cache..............

The SQL cache.......ocvviiiiiiiieeeeee e
The plugins cache..........ccccoiiiiiiiiiiee e
The path cache ...,
The CSS and JavaScript caches..........cccccoecvvvee.. 223
The image processing cache............cccccocoeiennene 223
Refreshing the cache.........ccccooieiiiiiceie e
Configuring the cache

Periodic tasks (CroN)ccoovcveiieeeiiiiie e
How cron jobs are run.........cccooccvieeiiiiiiiicieeeen, 227
Declaring a cron taskccccceveiiiieiiiciniccn 227

INAEX .. 325

Table of contents ... 335

FOIMS .. 229

HTML StrUCIUre ... 230
Displaying the formcccccoiviiiiii e 230
Handling errors returned............ccccccooiiiiniiiennnen. 231
Field separation using fieldsetcccoveerrnnnee. 232
Radio and checkbox fields............ccccooieiiiianen. 233
Explaining input fieldscccccooviieieiiiiieeee, 234

SH

Conditional displays.........cccccvveiiiiiiiieeeiiieiee e 234

PHP ProCessingcooouieeiiiieiiie e 237
Passing arguments to the CVT functions 237
Loading values into the forms...........cc.cccceeiienene. 238
Authorise the display or hiding of a form 238
Other preloading optionsccceveieniieiiieeeee. 240
Pipelines used for loading.........c.ccccooeviiiiiiiiecenen. 241
Checking the submitted values.............cccoveveeenns 242
Executing the processes............ccccceiviieiiiiicncnnnn. 243
Processing without AJAX.......cooieviiiiieeee e 244

EXAMPIES oo 246
Translate anythingccccooiiiiiiee 246
Calculating the day-of-the-year..............ccccooee 249

INAEX et 325

Table of conNtentscooiiiiiiiiii e 335

SQL GCCESSuuviieiiiie ittt 253

Modification of the SQL managerc.cccevveeeneene 254

Declaring table structuresccccoiiiiiiiiiineee, 254

Table updates and installationccccceveeviiiiieeennns 254

The SQL AP ... 256
Common elements..........coocveiiiiiiiieceee e 258
sql_allfetsel
sql_alltable
SOl AltEr oo
SAI_COUNt ..o
SQlL_COUNESEL...uvvieieeccieiee e
Sgl_create ..o
sql_create_base
sql_create_view
sql_date_proche
sql_delete ...
sql_drop_table ..o
SQI_Arop_ VIEWoovviiiieeieeeeee e
SAI_EIMTNO .

SOl BITO e
SAL_eXPlaiN.....oeeiii
SQLfEtCh oo
sql_fetch_all

SQl_fetSel.ciiiiiiiiie e
SOL_fTrE i
sql_getfetsel ...

342

sql_get_SelecCt......ocooviiiiiiii e 279
SAI_NEX (i 280
SOl N et 281
SALINSErt ..o 282
SOlL_INSErQ cooevveiee e 283
sqgl_insertg_multi............cooooiiiiiiii 284
SQl_IN_SelECt....uviiiiieiiee e 286
SAI_lIStADS .. 287
SOLMUN e 287

SOl OPtIMIZE ... 288
SAI_QUETY . 289

SOl QUOLE o 289
SOI_TEPAIN ...eiiiii e 291
SQlL_replaceooeeeiiiiiiee e 291
sqgl_replace_multi...........ccoooieiiiiiiniiiii e, 292
SOl_SEEK..ei it 293
SAI_SEIECT ... 293
sql_selectdb ... 296
SAI_SEIVEUN ...eeiieiiiiiiii et 297
sql_set_charset........ccccceiiiiiiii e 298
SQl_ShOWbASEccooviiiiiieeceee e 298
sqgl_showtableccoceiiiiiii e, 299
SOL_UPAAe ... 300
sgl_updateqcoocviiiiiii 301
SOlL_VEISION.....uiiiie e 302
INAEX e 325
Table of contentscoooiiiiiiiiieee 335
Creating your own plugins..........cccoveviiiiieiiieiicneeeee 303
The basic principle of plugins........ccccoeciiviiiiiiiieees 304
The minimal plugin.xml ... 304
plugin.xml, other common attributescccccceenies 305
Handling dependenciescccceeiiieiiiiii i 305
Installing external librariesccccccciiiiiniiiccn, 307
USIiNg PIPEIINES.....c.ueiiiiiiiee e 308
Defining bUttoNScceiiiiiii i 309
Defining page tabscooviiiiiieiiie e 312
EXAMPIES ..o 315
Adding a type of glossary......c.cccoccveeveeiiiiiiine e 316
Applying a default sort sequence to the loops 316
Consideration of new fields in table searches............... 318

343

344

Display an authoring form, if authorised 318

Modifying all of your templates in one hit...................... 319
GIOSSANY .ttt 321
AJAX s 322
ArQUMENT ..o 322
Cache filesoooueieieee e 322
Parameter ... 323
PiIpElINE ..o 323
RECUISION ..ot 324
INAEX s 325
Table of CONTENTS........oiiiiii e 335

	Programming with SPIP
	Documentation to be used by developers and webmasters

	Contents
	Preface
	Notes about this documentation
	License and rights
	Continuous improvements
	Write a chapter
	Translations
	Computer code and properties of languages

	Introduction
	What is SPIP?
	What can SPIP be used for?
	Requirements and basic description
	The templates (aka squelettes)
	Quick overview

	The templates
	Loops
	The syntax of loops
	Example

	The complete syntax of loops
	Example

	Nested loops
	Example

	Recursive loops
	Example

	More
	Loops with missing tables

	Tags
	Tag syntax, the definitive version
	How the brackets work
	Example

	The #ENV environment
	Example

	The contents of loops (boucles)
	Example

	Contents of parent loops
	Example

	Predefined tags
	Generic tags
	Automatic tag processes
	Example

	Interrupting the automatic tag processes
	Example

	Useful tags to know
	#AUTORISER
	Example

	#CACHE
	Example

	#CHEMIN
	Example

	#DESCRIPTIF_SITE_SPIP
	Example

	#EDIT
	Example

	#ENV
	Example

	#EVAL
	Example

	#EXPOSE
	Example

	#GET
	Example

	#INCLURE
	Example

	#INSERT_HEAD
	#INSERT_HEAD_CSS
	#INTRODUCTION
	Example

	#LANG
	Example

	#LANG_DIR
	Example

	#LESAUTEURS
	Example

	#MODELE
	Example

	#NOTES
	Details about footnotes
	Example

	#REM
	#SELF
	#SESSION
	Example

	#SESSION_SET
	Example

	#SET
	Example

	#VAL
	Example

	Loops Criteria
	Criteria syntax
	Example

	Criteria shortcuts
	Example

	Simple operators
	The IN operator
	Example

	The == operator
	Example

	The "!" operator
	Example

	Optional criteria
	Example

	Optional criteria with operators
	Example

	Tag filters
	Filter syntax
	Example

	Filters derived from PHP classes
	Comparison filters
	Example

	Search and replace filters
	Example

	Test filters
	Example

	Includes
	Includes within the templates
	Passing parameters to includes
	Passing the entire current context
	Example

	Ajax
	AJAX paginations
	Example

	AJAX links
	Example

	Linguistic elements
	The syntax of language strings
	Language files
	Content of the files
	Example

	Using the language codes
	Looking for a code in several files
	Overwriting a language file
	Example

	The complete syntax of language codes
	Parameters
	Calling with parameters
	Filtering language codes

	Using language codes in PHP
	Character strings during development
	Example

	Polyglots (multi tags)
	Usage by content editors

	Multilingualism
	Multilingual possibilities
	More
	The environment’s language
	The language of an object
	Example

	Special language criteria
	lang
	traduction
	origine_traduction
	Example

	Forcing the language of the visitor’s choice
	The parameter forcer_lang
	Another use of the cookie
	Example

	Choosing the navigation language
	Forcing a change in the interface language
	Example of a complete (and complex!) model:

	SQL joints between tables
	Automatic joins
	Example

	Explicit join declarations
	Exceptions

	Automating joins
	object, id_object

	Forcing joins
	Example

	Accessing multiple databases
	Declaring another database
	The connector file config/xx.php

	Accessing a declared database
	Example

	The "connect" URL parameter
	Example

	Inclure with a connector parameter

	Contents of the directories
	The list of directories
	config
	extensions
	IMG
	lib
	local
	plugins
	squelettes
	squelettes-dist
	tmp

	ecrire
	ecrire/action
	ecrire/auth
	ecrire/balise
	ecrire/base
	ecrire/charsets
	ecrire/configuration
	ecrire/exec
	ecrire/genie
	ecrire/inc
	ecrire/install
	ecrire/lang
	ecrire/maj
	ecrire/notifications
	ecrire/plugins
	ecrire/public
	ecrire/req
	ecrire/typographie
	ecrire/urls
	ecrire/xml

	prive
	prive/contenu
	prive/editer
	prive/exec
	prive/formulaires
	prive/images
	prive/infos
	prive/javascript
	prive/modeles
	prive/rss
	prive/stats
	prive/transmettre
	prive/vignettes

	Extending SPIP
	Introduction
	Templates or plug-ins?
	Use the "squelettes" folder
	Or create a plug-in
	So, is it best to write a plug-in or simply use the squelettes folder?

	Declaring options
	Declaring new functions
	Functions for specific templates

	The concept of path
	Overriding a file
	Overloading a _dist function

	Some functions you should know
	charger_fonction
	The searching principle
	Example

	find_all_in_path
	Example

	find_in_path
	Example

	include_spip
	Example

	recuperer_fond
	Simple usage
	Advanced usage
	Example

	spip_log
	trouver_table
	Example

	_request
	Security principles
	Retrieval from a table
	Example

	Pipelines
	Definition
	Declaration within a plugin
	Declaration without using a plugin

	List of current pipelines
	Declaring a new pipeline
	Contextual pipelines

	Pipeline details
	rechercher_liste_des_champs
	Example

	accueil_encours
	Example

	accueil_gadget
	Example

	accueil_informations
	Example

	affichage_entetes_final
	Example

	affichage_final
	Example

	afficher_config_objet
	Example

	afficher_contenu_objet
	Example

	afficher_fiche_objet
	Example

	affiche_droite
	Example

	affiche_enfants
	affiche_gauche
	Example

	affiche_hierarchie
	Example

	affiche_milieu
	ajouter_boutons
	Example

	ajouter_onglets
	Example

	alertes_auteur
	Example

	autoriser
	Example

	base_admin_repair
	body_prive
	boite_infos
	Example

	calculer_rubriques
	compter_contributions_auteur
	Example

	configurer_liste_metas
	Example

	declarer_tables_auxiliaires
	Example

	declarer_tables_interfaces
	table_des_tables
	exceptions_des_tables
	table_titre
	table_date
	tables_jointures
	exceptions_des_jointures
	table_des_traitements
	Example

	declarer_tables_objets_surnoms
	Example

	declarer_tables_principales
	Example

	declarer_url_objets
	Example

	definir_session
	Example

	delete_statistiques
	delete_tables
	editer_contenu_objet
	Example

	formulaire_charger
	Example

	formulaire_traiter
	Example

	formulaire_verifier
	Example

	header_prive
	Example

	insert_head
	Example

	insert_head_css
	Example

	jquery_plugins
	Example

	lister_tables_noerase
	lister_tables_noexport
	Example

	lister_tables_noimport
	optimiser_base_disparus
	Example

	post_typo
	Example

	pre_boucle
	Example

	pre_insertion
	Example

	pre_liens
	Example

	pre_typo
	Example

	rechercher_liste_des_jointures
	Example

	recuperer_fond
	Example

	rubrique_encours
	Example

	styliser
	taches_generales_cron
	Example

	trig_supprimer_objets_lies
	Example

	... and the rest of them

	Tags
	Dynamic tags
	The balise_NAME_dist function
	The balise_NAME_stat() function
	Example

	The balise_NAME_dyn() function
	The processes
	The display

	Generic tags
	Example

	Retrieving the object and id_object
	Static tags
	Dynamic tags

	Creating pages in the private zone
	The contents of a (template) exec file
	Example

	The contents of a (PHP) exec file
	The information panel

	Functionalities
	Authorisations
	The "autoriser" library
	Example

	The #AUTORISER tag
	Example

	Processes in the autoriser() function
	Example

	Creating or overloading the authorisations
	New functions, but not everywhere!
	Example

	Secured actions
	How secured actions work
	The securiser_action() function
	Generating a key
	Inside an action, verifying and retrieving the argument

	Secured actions’ predefined functions
	generer_action_auteur()
	redirige_action_auteur()
	redirige_action_post()
	Example

	Action URLs in a template
	Example

	Actions and processes
	The contents of an action file
	Operation of the function

	The verifications
	The right author
	The right argument
	And authorisation

	The processes
	Example of assigning moderation rights to an article

	Automatic redirections
	Forcing a redirection

	editer_objet actions

	Authentications
	The contents of an auth file
	The primary identification function

	The compiler
	The syntax of the templates
	Analysing a template
	A text
	A tag
	A loop
	Why use such references?

	The assembly processes
	Function call sequence

	Determining the cache
	Parameters determining the name of the template
	Determining the template file
	A clean composition
	The compilation

	The cache
	The template cache
	The page cache
	The SQL cache
	Cache of the meta data
	Cache of SQL descriptions

	The plugins cache
	plugin_xml.cache
	Plugin load files

	The path cache
	The CSS and JavaScript caches
	The image processing cache
	Refreshing the cache
	Configuring the cache
	Cache longevity
	Cache size
	Cache validity

	Periodic tasks (cron)
	How cron jobs are run
	Declaring a cron task
	Example

	Forms
	HTML structure
	Displaying the form
	Handling errors returned
	Field separation using fieldset
	Radio and checkbox fields
	Explaining input fields
	Example

	Conditional displays
	For any loops in the form

	PHP processing
	Passing arguments to the CVT functions
	Example

	Loading values into the forms
	Authorise the display or hiding of a form
	Example

	Other preloading options
	message_ok, message_erreur
	action
	_forcer_request
	_action
	_hidden

	Pipelines used for loading
	formulaire_charger
	paramètre _pipeline
	Example

	Checking the submitted values
	Example

	Executing the processes
	Important values
	The formulaire_traiter (form_process) pipeline

	Processing without AJAX

	Examples
	Translate anything
	The HTML template
	Loading, verifying and processing

	Calculating the day-of-the-year
	Implementation
	The HTML template file
	Loading, verifying and processing

	SQL access
	Modification of the SQL manager
	Declaring table structures
	Table updates and installation
	Creating tables
	Updating tables

	The SQL API
	Common elements
	Coding principles

	sql_allfetsel
	Example

	sql_alltable
	sql_alter
	Example

	sql_count
	Example

	sql_countsel
	Example

	sql_create
	Example

	sql_create_base
	sql_create_view
	Example

	sql_date_proche
	Example

	sql_delete
	Example

	sql_drop_table
	Example

	sql_drop_view
	sql_errno
	sql_error
	sql_explain
	sql_fetch
	Example

	sql_fetch_all
	sql_fetsel
	Example

	sql_free
	sql_getfetsel
	Example

	sql_get_charset
	sql_get_select
	Example

	sql_hex
	sql_in
	Example

	sql_insert
	Example

	sql_insertq
	Example

	sql_insertq_multi
	Example

	sql_in_select
	Example

	sql_listdbs
	sql_multi
	Example

	sql_optimize
	sql_query
	sql_quote
	Example

	sql_repair
	sql_replace
	sql_replace_multi
	sql_seek
	sql_select
	Example

	sql_selectdb
	sql_serveur
	Using aliases to make things simple

	sql_set_charset
	sql_showbase
	sql_showtable
	sql_update
	Example

	sql_updateq
	Example

	sql_version

	Creating your own plugins
	The basic principle of plugins
	The minimal plugin.xml
	plugin.xml, other common attributes
	Options and functions
	Documentation link
	Plugin icon

	Handling dependencies
	Necessite
	Utilise
	Example

	Installing external libraries
	Example

	Using pipelines
	Example

	Defining buttons
	Authorisations
	Example

	Defining page tabs
	Authorisations
	Example

	Examples
	Adding a type of glossary
	Applying a default sort sequence to the loops
	A few details

	Consideration of new fields in table searches
	Example

	Display an authoring form, if authorised
	Modifying all of your templates in one hit

	Glossary
	AJAX
	Argument
	Cache files
	Parameter
	Pipeline
	Recursion

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	_

	Table of contents

